Desktop version

Home arrow Communication arrow Biofilms and Implantable Medical Devices: Infection and Control

Concluding remarks

Diagnosis of biofilm formation on medical devices is mainly based on the isolation and identification of the contaminant bacteria and their subsequent characterization for biofilm formation using in vitro assays. This approach is not efficient for the timely treatment of patients and often requires the removal of the device. As of 2016, efforts are focused on optimizing in vivo visualization of biofilms formed on the surface of medical devices. Although informative, these techniques require further confirmation of the identity and viability of the contaminant organisms and therefore are not practical for rapid patient intervention with antimicrobial therapy. State-of-the-art methodologies are currently under development to engineer smart catheters using biosensors that allow the detection of biofilm formation in its early stages. Albeit promising, this futuristic approach still needs optimization for clinical application.


Anastasiadis, P., Mojica, K.D., Allen, J.S., Matter, M.L., 2014. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles. J. Nanobiotechnol. 12, 24.

Balaban, N., Goldkorn, T., Gov, Y., Hirshberg, M., Koyfman, N., Matthews, H.R., Nhan, R.T., Singh, B., Uziel, O., 2001. Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J. Biol. Chem. 276, 2658-2667.

Baldassarri, L., Donnelli, G., Gelosia, A., Voglino, M.C., Simpson, A.W., Christensen, G.D., 1996. Purification and characterization of the staphylococcal slime-associated antigen and its occurrence among Staphylococcus epidermidis clinical isolates. Infect. Immun. 64, 3410-3415.

Bayston, R., Penny, S.R., 1972. Excessive production of mucoid substance in Staphylococcus SIIA: a possible factor in colonisation of Holter shunts. Dev. Med. Child Neurol. Suppl. 27, 25-28.

Bui, K.T., Mehta, S., Khuu, T.H., Ross, D., Carlson, M., Leibowitz, M.R., Schaenman, J.M., Saggar, R., Lynch 3rd, J.P., Ardehali, A., Kubak, B.M., 2014. Extended spectrum beta- lactamase-producing Enterobacteriaceae infection in heart and lung transplant recipients and in mechanical circulatory support recipients. Transplantation 97, 590-594.

Burmolle, M., Thomsen, T.R., Fazli, M., Dige, I., Christensen, L., Homoe, P., Tvede, M., Nyvad, B., Tolker-Nielsen, T., Givskov, M., Moser, C., Kirketerp-Moller, K., Johansen, H.K., Hoiby, N., Jensen, P.O., Sorensen, S.J., Bjarnsholt, T., 2010. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. FEMS Immunol. Med. Microbiol. 59, 324-336.

Christensen, G.D., Simpson, W.A., Bisno, A.L., Beachey, E.H., 1982. Adherence of slime- producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37, 318-326.

Cohen, A.L., Marlow, D.P., Garner, G.E., 1968. A rapid critical point using fluorocarbon (“freons”) as intermediate and transitional fluids. J. Microsc. (Oxford) 7, 331-342.

Collignon, P.J., 1994. Intravascular catheter associated sepsis: a common problem. The Australian study on intravascular catheter associated sepsis. Med. J. Aust. 161, 374-378.

Cooper, G.L., Hopkins, C.C., 1985. Rapid diagnosis of intravascular catheter-associated infection by direct Gram staining of catheter segments. N. Engl. J. Med. 312, 1142-1147.

Cosgrove, S.E., Sakoulas, G., Perencevich, E.N., Schwaber, M.J., Karchmer, A.W., Carmeli, Y., 2003. Comparison of mortality associated with methicillin-resistant and methicillin- susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin. Infect. Dis. 36, 53-59.

Cosgrove, S.E., Qi, Y., Kaye, K.S., Harbarth, S., Karchmer, A.W., Carmeli, Y., 2005. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect. Control Hosp. Epidemiol. 26, 166-174.

Cosgrove, S.E., 2006. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 42 (Suppl. 2), S82-S89.

Costerton, J.W., Irvin, R.T., Cheng, K.J., 1981. The role of bacterial surface structures in pathogenesis. Crit. Rev. Microbiol. 8, 303-338.

Donlan, R.M., 2001. Biofilms and device-associated infections. Emerg. Infect. Dis. 7, 277-281.

Edwards, M.C., Gibbs, R.A., 1994. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 3, S65-S75.

Ehrlich, G.D., Stoodley, P., Kathju, S., Zhao, Y., Mcleod, B.R., Balaban, N., Hu, F.Z., Sotereanos, N.G., Costerton, J.W., Stewart, P.S., Post, J.C., Lin, Q., 2005. Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin. Orthop. Relat. Res. 59-66.

Elliott, T.S., Tebbs, S.E., Moss, H.A., Worthington, T., Spare, M.K., Faroqui, M.H., Lambert, P.A., 2000. A novel serological test for the diagnosis of central venous catheter-associated sepsis. J. Infect. 40, 262-266.

Elnifro, E.M., Ashshi, A.M., Cooper, R.J., Klapper, P.E., 2000. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13, 559-570.

Freeman, D.J., Falkiner, F.R., Keane, C.T., 1989. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 42, 872-874.

Fux, C.A., Costerton, J.W., Stewart, P.S., Stoodley, P., 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34-40.

Guggenbichler, J.P., Assadian, O., Boeswald, M., Kramer, A., 2011. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials - catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg. Interdiszip. 6, Doc18.

Harris, L.G., Richards, R.G., 2006. Staphylococci and implant surfaces: a review. Injury 37 (Suppl. 2), S3-S14.

Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O., 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322-332.

Ishak, M.A., Groschel, D.H., Mandell, G.L., Wenzel, R.P., 1985. Association of slime with pathogenicity of coagulase-negative staphylococci causing nosocomial septicemia. J. Clin. Microbiol. 22, 1025-1029.

Karamanos, N.K., Syrokou, A., Panagiotopoulou, H.S., Anastassiou, E.D., Dimitracopoulos, G., 1997. The major 20-kDa polysaccharide of Staphylococcus epidermidis extracellular slime and its antibodies as powerful agents for detecting antibodies in blood serum and differentiating among slime-positive and -negative S. epidermidis and other staphylococci species. Arch. Biochem. Biophys. 342, 389-395.

Kite, P., Dobbins, B.M., Wilcox, M.H., Fawley, W.N., Kindon, A.J., Thomas, D., Tighe, M.J., Mcmahon, M.J., 1997. Evaluation of a novel endoluminal brush method for in situ diagnosis of catheter related sepsis. J. Clin. Pathol. 50, 278-282.

Klein, B., 2012. Smart catheters detect and fight infection. MedGadget Newsl.. Available from:

Kyne, L., Hamel, M.B., Polavaram, R., Kelly, C.P., 2002. Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin. Infect. Dis. 34, 346-353.

Lang, S., Livesley, M.A., Lambert, P.A., Littler, W.A., Elliott, T.S., 2000. Identification of a novel antigen from Staphylococcus epidermidis. FEMS Immunol. Med. Microbiol. 29, 213-220.

Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J., 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516-4522.

Ljungstrom, L., Enroth, H., Claesson, B.E., Ovemyr, I., Karlsson, J., Froberg, B., Brodin, A.K., Pernestig, A.K., Jacobsson, G., Andersson, R., Karlsson, D., 2015. Clinical evaluation of commercial nucleic acid amplification tests in patients with suspected sepsis. BMC Infect. Dis. 15, 199.

Locci, R., Peters, G., Pulverer, G., 1981. Microbial colonization of prosthetic devices. I. Microtopographical characteristics of intravenous catheters as detected by scanning electron microscopy. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 173, 285-292.

Lorente, L., Henry, C., Martin, M.M., Jimenez, A., Mora, M.L., 2005. Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Crit. Care 9, R631-R635.

Ma, H., Bryers, J.D., 2010. Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm. J. Ind. Microbiol. Biotechnol. 37, 1081-1089.

Ma, R., Zhu, M., Liu, Z., 2005. The effect of sodium doecyl sulfate on Streptococcus sanguis biofilm. Shanghai Kou Qiang Yi Xue 14, 507-510.

Maki, D.G., Weise, C.E., Sarafin, H.W., 1977. A semiquantitative culture method for identifying intravenous-catheter-related infection. N. Engl. J. Med. 296, 1305-1309.

Marrie, T.J., Costerton, J.W., 1984. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 19, 687-693.

Oliver, J.D., 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 34, 415-425.

Paredes, J., Alonso-Arce, M., Schmidt, C., Valderas, D., Sedano, B., Legarda, J., Arizti, F., Gomez, E., Aguinaga, A., Del Pozo, J.L., Arana, S., 2014. Smart central venous port for early detection of bacterial biofilm related infections. Biomed. Microdevices 16, 365-374.

Percival, S.L., Suleman, L., Vuotto, C., Donelli, G., 2015. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J. Med. Microbiol. 64, 323-334.

Raad, I.I., Hanna, H.A., Boktour, M., Chaiban, G., Hachem, R.Y., Dvorak, T., Lewis, R., Murray, B.E., 2005. Vancomycin-resistant Enterococcus faecium: catheter colonization, esp gene, and decreased susceptibility to antibiotics in biofilm. Antimicrob. Agents Chemother. 49, 5046-5050.

Richards, M.J., Edwards, J.R., Culver, D.H., Gaynes, R.P., 1999. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med. 27, 887-892.

Rushford, J.A., Hoy, C.M., Kite, P., Puntis, J.W., 1993. Rapid diagnosis of central venous catheter sepsis. Lancet 342, 402-403.

Safdar, N., Maki, D.G., 2002. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann. Intern. Med. 136, 834-844.

Safdar, N., Crnich, C.J., Maki, D.G., 2001. Nosocomial infections in the intensive care unit associated with invasive medical devices. Curr. Infect. Dis. Rep. 3, 487-495.

Shachor-Meyouhas, Y., Sprecher, H., Moscoviz, D., Zaidman, I., Haimi, M., Kassis, I., 2013. Molecular-based diagnosis of bacteremia in the setting of fever with or without neutropenia in pediatric hematology-oncology patients. J. Pediatr. Hematol. Oncol. 35, 500-503.

Sherertz, R.J., Raad, I.I., Belani, A., Koo, L.C., Rand, K.H., Pickett, D.L., Straub, S.A., Fau- erbach, L.L., 1990. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J. Clin. Microbiol. 28, 76-82.

Song, C., Yu, J.L., Ai, Q., Liu, D., Lu, W., Lu, Q., Peng, N.N., 2013. Diversity analysis of biofilm bacteria on tracheal tubes removed from intubated neonates. Zhonghua Er Ke Za Zhi 51, 602-606.

Stewart, P.S., 2003. New ways to stop biofilm infections. Lancet 361, 97.

Stone, P.W., Gupta, A., Loughrey, M., Della-Latta, P., Cimiotti, J., Larson, E., Rubenstein, D., Saiman, L., 2003. Attributable costs and length of stay of an extended-spectrum beta- lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. Infect. Control Hosp. Epidemiol. 24, 601-606.

Taha, M., Kalab, M., Yi, Q.L., Landry, C., Greco-Stewart, V., Brassinga, A.K., Sifri, C.D., Ramirez-Arcos, S., 2014. Biofilm-forming skin microflora bacteria are resistant to the bactericidal action of disinfectants used during blood donation. Transfusion 54, 2974-2982.

Thomas, M., Marshall, M.J., Miller, E.A., Kuprat, A.P., Kleese-Van Dam, K., Carson, J.P., 2014. 3D imaging of microbial biofilms: integration of synchrotron imaging and an interactive visualization interface. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 3304-3307.

Tighe, M.J., Kite, P., Fawley, W.N., Thomas, D., Mcmahon, M.J., 1996. An endoluminal brush to detect the infected central venous catheter in situ: a pilot study. BMJ 313, 1528-1529.

Tissari, P., Zumla, A., Tarkka, E., Mero, S., Savolainen, L., Vaara, M., Aittakorpi, A., Laakso, S., Lindfors, M., Piiparinen, H., Maki, M., Carder, C., Huggett, J., Gant, V., 2010. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet 375, 224-230.

Vincent, J.L., 2003. Nosocomial infections in adult intensive-care units. Lancet 361, 2068-2077.

Wang, R., Khan, B.A., Cheung, G.Y., Bach, T.H., Jameson-Lee, M., Kong, K.F., Queck, S.Y., Otto, M., 2011. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121, 238-248.

Wergeland, H.I., Haaheim, L.R., Natas, O.B., Wesenberg, F., Oeding, P., 1989. Antibodies to staphylococcal peptidoglycan and its peptide epitopes, teichoic acid, and lipoteichoic acid in sera from blood donors and patients with staphylococcal infections. J. Clin. Microbiol. 27, 1286-1291.

Worthington, T., Lambert, P., Elliott, T., 2000. A novel serological test for the laboratory diagnosis of central venous catheter-associated sepsis. J. Antimicrob. Chemother. 46, 516.

Worthington, T., Lambert, P.A., Traube, A., Elliott, T.S., 2002. A rapid ELISA for the diagnosis of intravascular catheter related sepsis caused by coagulase negative staphylococci. J. Clin. Pathol. 55, 41-43.

Xi, C., Marks, D., Schlachter, S., Luo, W., Boppart, S.A., 2006. High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. J. Biomed. Opt. 11 034001-1-6.

Xi, C., 2014. Analysis of Biofilms on Medical Explants. Public Workshop on Biofilms, Medical Devices and Anti-biofilm Technology FDA Campus. Available from: downloads/MedicalDevices/NewsEvents/WorkshopsConferences/UCM387634.pdf.

Zufferey, J., Rime, B., Francioli, P., Bille, J., 1988. Simple method for rapid diagnosis of catheter- associated infection by direct acridine orange staining of catheter tips. J. Clin. Microbiol. 26, 175-177.

This page intentionally left blank

< Prev   CONTENTS   Source   Next >

Related topics