Desktop version

Home arrow Philosophy arrow Advances in Proof-Theoretic Semantics


1. de Campos Sanz, W., Piecha, T.: Inversion by definitional reflection and the admissibility of logical rules. Rev. Symb. Log. 2(3), 550–569 (2009)

2. de Campos Sanz, W., Piecha, T., Schroeder-Heister, P.: Constructive semantics, admissibility

of rules and the validity of Peirce's law. Log. J. IGPL 22(2), 297–308 (2014). First published online 6 August 2013

3. Dummett, M.: The Logical Basis of Metaphysics. Duckworth, London (1991)

4. Ferreira, F.: Comments on predicative logic. J. Philos. Log. 35, 1–8 (2006)

5. Gabbay, D.M.: On Kreisel's notion of validity in Post systems. Studia Logica 35(3), 285–295


6. Gabbay, D.M.: Semantical Investigations in Heyting's Intuitionistic Logic. Reidel, Dordrecht


7. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39,

176–210, 405–431 (1934/35). English translation in: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)

8. Goldfarb, W.: On Dummett's “Proof-theoretic justifications of logical laws”. In: Piecha, T.,

Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016). This volume (Circulated manuscript, 1998)

9. Harrop, R.: Concerning formulas of the types in intuitionistic formal systems. J. Symb. Log.

25, 27–32 (1960)

10. Kreisel, G.: Unpublished appendix to the paper “Set theoretic problems suggested by the notion

of potential totality” in: Infinitistic Methods. Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959. Pergamon, Oxford (1961) (reference taken from [5]; unpublished appendix not found)

11. Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aus-

sagenkalkül. Archiv für mathematische Logik und Grundlagenforschung 3, 74–78 (1957)

12. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Crossley, J., Dummett, M.A.E.

(eds.) Formal Systems and Recursive Functions, pp. 92–130. North-Holland, Amsterdam (1965)

13. Makinson, D.: On an inferential semantics for classical logic. Log. J. IGPL 22(1), 147–154


14. Moschovakis, J.: Intuitionistic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2014).

15. Olkhovikov, G.K., Schroeder-Heister, P.: Proof-theoretic harmony and the levels of rules: gen-

eralised non-flattening results. In: Moriconi, E., Tesconi, L. (eds.) Second Pisa Colloquium in Logic, Language and Epistemology, pp. 245–287. ETS, Pisa (2014)

16. Piecha, T., de Campos Sanz, W., Schroeder-Heister, P.: Failure of completeness in proof-

theoretic semantics. J. Philos. Log. 44(3), 321–335 (2014). First published online 1 August


17. Piecha, T., Schroeder-Heister, P.: Atomic systems in proof-theoretic semantics: two approaches.

In: Redmond, J., Nepomuceno Fernández, A., Pombo, O. (eds.) Epistemology, Knowledge and the Impact of Interaction. Springer, Dordrecht (2016)

18. Prawitz, D.: Ideas and results in proof theory. In: Fenstad, J.E. (ed.) Proceedings of the Second

Scandinavian Logic Symposium, Studies in Logic and the Foundations of Mathematics, vol. 63, pp. 235–307. North-Holland, Amsterdam (1971)

19. Prawitz, D.: Towards a foundation of a general proof theory. In: Suppes, P., et al. (eds.) Logic,

Methodology and Philosophy of Science IV, pp. 225–250. North-Holland, Amsterdam (1973)

20. Prawitz, D.: On the idea of a general proof theory. Synthese 27, 63–77 (1974)

21. Prawitz, D.: Meaning approached via proofs. In: Kahle, R., Schroeder-Heister, P. (eds.) Proof-

Theoretic Semantics. Synthese, vol. 148, pp. 507–524. Springer, Berlin (2006)

22. Prawitz, D.: An approach to general proof theory and a conjecture of a kind of completeness

of intuitionistic logic revisited. In: Pereira, L.C., Haeusler, E.H., de Paiva, V. (eds.) Advances in Natural Deduction, Trends in Logic, vol. 39, pp. 269–279. Springer, Berlin (2014)

23. Prawitz, D.: On the relation between Heyting's and Gentzen's approaches to meaning. In:

Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016). This volume

24. Read, S.: Proof-theoretic validity. In: Caret, C.R., Hjortland, O.T. (eds.) Foundations of Logical

Consequence, Mind Association Occasional Series, pp. 136–158. Oxford University Press, Oxford (2015)

25. Sandqvist, T.: An inferentialist interpretation of classical logic. Ph.D. thesis, Department of

Philosophy, Uppsala University (2005)

26. Sandqvist, T.: Classical logic without bivalence. Analysis 69, 211–217 (2009)

27. Sandqvist, T.: Basis-extension semantics for intuitionistic sentential logic (2014). To appear

28. Schroeder-Heister, P.: The completeness of intuitionistic logic with respect to a validity concept

based on an inversion principle. J. Philos. Log. 12, 359–377 (1983)

29. Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Log. 49, 1284–1300


30. Schroeder-Heister, P.: Proof-theoretic validity and the completeness of intuitionistic logic. In:

Dorn, G., Weingartner, P. (eds.) Foundations of Logic and Linguistics: Problems and Their Solutions, pp. 43–87. Plenum Press, New York (1985)

31. Schroeder-Heister, P.: Validity concepts in proof-theoretic semantics. In: Kahle, R., Schroeder-

Heister, P. (eds.) Proof-Theoretic Semantics. Synthese, vol. 148, pp. 525–571. Springer, Berlin (2006)

32. Schroeder-Heister, P.: The calculus of higher-level rules, propositional quantification, and the

foundational approach to proof-theoretic harmony. In: Indrzejczak, A. (ed.) Gentzen's and Jas´kowski's Heritage. 80 Years of Natural Deduction and Sequent Calculi. Studia Logica, vol. 103, pp. 1185–1216. Springer, Berlin (2014)

33. Schroeder-Heister, P.: Examples of proof-theoretic validity (Supplement to [34]). In: Zalta,

E.N. (ed.) The Stanford Encyclopedia of Philosophy (2012). proof-theoretic-semantics/examples.html

34. Schroeder-Heister, P.: Proof-theoretic semantics. In: Zalta, E.N. (ed.) The Stanford Encyclo-

pedia of Philosophy (2012).

35. Veldman, W.: An intuitionistic completeness theorem for intuitionistic predicate logic. J. Symb.

Log. 41, 159–166 (1976)

36. Wansing, H.: The idea of a proof-theoretic semantics and the meaning of the logical operations.

Studia Logica 64, 3–20 (2000)

Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >