Desktop version

Home arrow Philosophy arrow Advances in Proof-Theoretic Semantics


1. Bolzano, B.: Wissenschaftslehre. Versuch einer ausführlichen und größtentheils neuen Darstellung der Logik mit steter Rücksicht auf deren bisherige Bearbeiter, vol. I–IV. Seidel, Sulzbach (1837)

2. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite descent. In: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 51–62. IEEE Press, Los Alamitos (2007)

3. Carnap, R.: Abriß der Logistik. Mit besonderer Berücksichtigung der Relationstheorie und ihrer Anwendungen. Springer, Wien (1929)

4. Dean, W., Kurokawa, H.: Kreisel's Theory of Constructions, the Kreisel-Goodman paradox, and the second clause. In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016) (This volume)

5. Denecker, M., Bruynooghe, M., Marek, V.: Logic programming revisited: logic programs as inductive definitions. ACM Trans. Comput. Log. 2, 623–654 (2001)

6. Došen, K.: Logical consequence: a turn in style. In: Dalla Chiara, M.L., Doets, K., Mundici, D., van Benthem, J. (eds.) Logic and Scientific Methods: Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995, pp. 289–

311. Kluwer, Dordrecht (1997)

7. Došen, K.: Cut Elimination in Categories. Springer, Berlin (2000)

8. Došen, K.: Identity of proofs based on normalization and generality. Bull. Symb. Log. 9, 477– 503 (2003)

9. Došen, K.: Models of deduction. Synthese 148, 639–657. Special issue: Kahle, R., SchroederHeister, P. (eds.) Proof-Theoretic Semantics (2006)

10. Došen, K.: Comments on an opinion. In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016) (This volume)

11. Došen, K.: On the paths of categories. In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016) (This volume)

12. Došen, K., Petric´, Z.: Proof-Theoretical Coherence. College Publications, London (2004)

13. Dummett, M.: Frege: Philosophy of Language. Duckworth, London (1973)

14. Dummett, M.: The Logical Basis of Metaphysics. Duckworth, London (1991)

15. Dyckhoff, R.: Some remarks on proof-theoretic semantics. In: Piecha, T., Schroeder-Heister,

P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016) (This volume)

16. Eriksson, L.-H.: A finitary version of the calculus of partial inductive definitions. In: Eriksson, L.-H., Hallnäs, L., Schroeder-Heister, P. (eds.) Extensions of Logic Programming. Second International Workshop, ELP '91, Stockholm, January 1991, Proceedings. Lecture Notes in Computer Science, vol. 596, pp. 89–134. Springer, Berlin (1992)

17. Eriksson, L.-H.: Finitary partial inductive definitions and general logic. Ph.D. Thesis. Royal Institute of Technology, Stockholm (1993)

18. Fitch, F.B.: Symbolic Logic: An Introduction. Ronald Press, New York (1952)

19. Francez, N., Dyckhoff, R.: Proof-theoretic semantics for a natural language fragment. Linguist.

Philos. 33, 447–477 (2010)

20. Francez, N., Dyckhoff, R., Ben-Avi, G.: Proof-theoretic semantics for subsentential phrases.

Studia Logica 94, 381–401 (2010)

21. Frege, G.: Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet, vol. I. Hermann Pohle, Jena (1893)

22. Frege, G.: Logische Untersuchungen. Dritter Teil: Gedankengefüge. Beiträge zur Philosophie des deutschen Idealismus 3, 36–51 (1923)

23. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs.

J. Assoc. Comput. Mach. 38, 620–650 (1991)

24. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference and Symposium on Logic Programming, pp. 1070–1080. IEEE, New York (1988)

25. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176– 210, 405–431 (1934/35). English translation in: Szabo, M. E. (ed.) The Collected Papers of Gerhard Gentzen, North Holland, Amsterdam 1969, pp. 68–131

26. Girard, J.-Y.: A fixpoint theorem in linear logic. Linear Logic Mailing List ( This email address is being protected from spam bots, you need Javascript enabled to view it ) 6 February 1992

27. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press, Cambridge (1989)

28. Hallnäs, L.: Partial inductive definitions. Theor. Comput. Sci. 87, 115–142 (1991)

29. Hallnäs, L.: On the proof-theoretic foundation of general definition theory. Synthese 148, 589– 602 (2006)

30. Hallnäs, L.: On the proof-theoretic foundations of set theory. In: Piecha, T., Schroeder-Heister,

P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016) (This volume)

31. Hallnäs, L., Schroeder-Heister, P.: A proof-theoretic approach to logic programming: I. Clauses as rules. II. Programs as definitions. J. Log. Comput. 1, 261–283, 635–660 (1990/91)

32. Hallnäs, L., Schroeder-Heister, P.: Girard's fixpoint theorem. Linear Logic Mailing List ( This email address is being protected from spam bots, you need Javascript enabled to view it ) 19 February 1992

33. Hodges, W.: A strongly differing opinion on proof-theoretic semantics? In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. Springer, Dordrecht (2016) (This volume)

34. Jas´kowski, S.: On the rules of suppositions in formal logic. Stud. Log. 1, 5–32 (1934). Reprinted in: McCall, S. (ed.), Polish Logic 1920–1939, Oxford 1967, pp. 232–258

35. Kunen, K.: Negation in logic programming. J. Log. Program. 4, 289–308 (1987)

36. von Kutschera, F.: Die Vollständigkeit des Operatorensystems {¬, ∧, ∨, ⊃} für die intuitionis-

tische Aussagenlogik im Rahmen der Gentzensemantik. Archiv für mathematische Logik und

Grundlagenforschung 11, 3–16 (1968)

37. López-Escobar, E.G.K.: Standardizing the N systems of Gentzen. In: Caicedo, X., Montenegro,

C.H. (eds.), Models, Algebras, and Proofs, pp. 411–434. Dekker, New York (1999)

38. Lorenzen, P.: Konstruktive Begründung der Mathematik. Mathematische Zeitschrift 53, 162– 202 (1950)

39. Lorenzen, P.: Einführung in die operative Logik und Mathematik. Springer, Berlin (1955). 2nd edn. 1969

40. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive definitions. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium, pp. 179–216. North-Holland, Amsterdam (1971)

41. McDowell, R., Miller, D.: A logic for reasoning with higher-order abstract syntax. In: Logic in Computer Science (LICS 1997, Warsaw), pp. 434–445. IEEE Computer Society (1997)

42. Negri, S., von Plato, J.: Proof Analysis: A Contribution to Hilbert's Last Problem. Cambridge University Press, Cambridge (2011)

43. von Plato, J.: Natural deduction with general elimination rules. Arch. Math. Log. 40, 541–567 (2001)

44. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell, Stockholm (1965). Reprinted Dover Publications, Mineola NY 2006

45. Prawitz, D.: Ideas and results in proof theory. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium (Oslo 1970), pp. 235–308. North-Holland, Amsterdam (1971)

46. Prawitz, D.: On the idea of a general proof theory. Synthese 27, 63–77 (1974)

47. Prawitz, D.: Proofs and the meaning and completeness of the logical constants. In: Hintikka, J., Niiniluoto, I., Saarinen, E. (eds.) Essays on Mathematical and Philosophical Logic: Proceedings of the Fourth Scandinavian Logic Symposium and the First Soviet-Finnish Logic Conference, Jyväskylä, Finland, June 29—July 6, 1976, pp. 25–40. Kluwer, Dordrecht (1979). Revised German translation 'Beweise und die Bedeutung und Vollständigkeit der logischen Konstanten', Conceptus 16, 31–44 (1982)

48. Prawitz, D.: Remarks on some approaches to the concept of logical consequence. Synthese 62, 152–171 (1985)

49. Prawitz, D.: Pragmatist and verificationist theories of meaning. In: Auxier, R.E., Hahn, L.E. (eds.) The Philosophy of Michael Dummett, pp. 455–481. Open Court, Chicago (2007)

50. Prawitz, D.: Inference and knowledge. In: Peliš, M. (ed.) The Logica Yearbook 2008, pp.

175–192. College Publications, London (2009)

51. Read, S.: General-elimination harmony and the meaning of the logical constants. J. Philos.

Log. 39, 557–576 (2010)

52. Read, S.: General-elimination harmony and higher-level rules. In: Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning, pp. 293–312. Springer, Cham (2015)

53. Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Log. 49, 1284–1300


54. Schroeder-Heister, P.: Cut elimination in logics with definitional reflection. In: Pearce, D., Wansing, H., (eds) Nonclassical Logics and Information Processing, International Workshop, Berlin, November 1990, Proceedings (Lecture Notes in Computer Science vol. 619) Springer, Berlin, pp. 146–171 (1992)

55. Schroeder-Heister, P.: Rules of definitional reflection. In: Proceedings of the 8th Annual IEEE

Symposium on Logic in Computer Science (Montreal 1993), pp. 222–232. IEEE Press, Los Alamitos (1993)

56. Schroeder-Heister, P.: Validity concepts in proof-theoretic semantics. Synthese 148, 525–571.

Special issue: Kahle R., Schroeder-Heister, P. (eds.) Proof-Theoretic Semantics (2006)

57. Schroeder-Heister, P.: Generalized definitional reflection and the inversion principle. Logica Universalis 1, 355–376 (2007)

58. Schroeder-Heister, P.: Proof-theoretic versus model-theoretic consequence. In: Peliš, M. (ed.)

The Logica Yearbook 2007, pp. 187–200. Filosofia, Prague (2008)

59. Schroeder-Heister, P.: Sequent calculi and bidirectional natural deduction: on the proper basis of proof-theoretic semantics. In: Peliš, M. (ed.) The Logica Yearbook 2008, pp. 237–251. College Publications, London (2009)

60. Schroeder-Heister, P.: The categorical and the hypothetical: A critique of some fundamental

assumptions of standard semantics. Synthese, 187, 925–942. Special issue: Lindström, S., Palmgren E., Westerståhl, D. (eds.) The Philosophy of Logical Consequence and Inference (2012)

61. Schroeder-Heister, P.: Proof-theoretic semantics. In: Zalta, E.N. (ed.) Stanford Encyclopedia

of Philosophy, Stanford (2012)

62. Schroeder-Heister, P.: Proof-theoretic semantics, self-contradiction, and the format of deductive reasoning. Topoi 31, 77–85 (2012)

63. Schroeder-Heister, P.: The calculus of higher-level rules, propositional quantifiers, and the

foundational approach to proof-theoretic harmony. Studia Logica, 102, 1185–1216. Special issue: Indrzejczak, A. (ed.) Gentzen's and Jas´kowski's Heritage: 80 Years of Natural Deduction and Sequent Calculi (2014)

64. Schroeder-Heister, P.: Frege's sequent calculus. In: Indrzejczak, A., Kaczmarek, J., Zawidzki,

M. (eds.) Trends in Logic XIII: Gentzen's and Jas´kowski's Heritage—80 Years of Natural Deduction and Sequent Calculi, pp. 233–245. Łódz´ University Press, Łódz´ (2014)

65. Schroeder-Heister, P.: Generalized elimination inferences, higher-level rules, and the

implications-as-rules interpretation of the sequent calculus. In: Pereira, L.C., Haeusler, E.H., de Paiva, V. (eds.) Advances in Natural Deduction: A Celebration of Dag Prawitz's Work, pp. 1–29. Springer, Heidelberg (2014)

66. Schroeder-Heister, P.: Harmony in proof-theoretic semantics: A reductive analysis. In: Wansing,

H. (ed.) Dag Prawitz on Proofs and Meaning, pp. 329–358. Springer, Cham (2015)

67. Schroeder-Heister, P.: Proof-theoretic validity based on elimination rules. In: Haeusler, E.H., de Campos Sanz, W., Lopes, B. (eds.) Why is this a proof? Festschrift for Luiz Carlos Pereira, pp. 159–176. College Publications, London (2015)

68. Tennant, N.: Proof and paradox. Dialectica 36, 265–296 (1982)

69. Tennant, N.: Autologic. Edinburgh University Press, Edinburgh (1992)

70. Tennant, N.: Ultimate normal forms for parallelized natural deductions. Log. J. IGPL 10, 299– 337 (2002)

71. Tranchini, L.: Proof-theoretic semantics, paradoxes, and the distinction between sense and denotation. J. Log. Comput. (2015) Published online June 2014

72. Wansing, H.: The idea of a proof-theoretic semantics. Studia Logica 64, 3–20 (2000)

73. Wie˛ckowski, B.: Rules for subatomic derivation. Rev. Symb. Log. 4, 219–236 (2011)

Found a mistake? Please highlight the word and press Shift + Enter