Desktop version

Home arrow Environment

  • Increase font
  • Decrease font


<<   CONTENTS   >>
Table of Contents:

Acknowledgments

The authors are grateful to the Director, ICAR (Indian Agricultural Research Institute), New Delhi, and Head, CESCRA for providing necessary facilities and support service for this work.

References

Adriaens, P., Li, M.Y. and Michalak, A.M. 2006. Scaling methods of sedunent bioremediation processes and applications. Eng. Life. Sci. 6(3): 217-227.

Amin, M.T., Alazba, A.A. and Manzoor, U. 2014. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adva. Mater. Sci. Eng. 825910. http://dx.doi.org/10.1155/2014/825910.

Ayotamuno, J.M. and Kogbara, R.B. 2007. Determining the tolerance level of Zea mays (maize) to a crude oil polluted agricultural soil. Afr. J. Biotechnol. 6(11).

Azubuike, C.C., Chikere, C.B. and Okpokwasili, G.C. 2016. Bioremediation techniques—classification based on site of application: principles, advantages, limitations, and prospects. World J. Microbiol. 32(11): 180.

Bahnemann, D. 2004. Photocatalytic water treatment: solar energy applications. Solar Energy 77(5): 445-459.

Bandara, J., Klehm, U. and Kiwi, J 2007. Rasclug nngs-Fe203 composite photocatalyst activate m the degradation of 4-clilorophenol and Orange II under daylight irradiation. Appl. Catal. B. 76(1-2): 73-81.

Barea, J.M., Azcon, R. and Azcon-Aguilar, C. 2002. Mycorrhizosphere interactions to unprove plant fitness and soil quality. Anton Leeuw 81: 343-51.

Barr, D., Fmnamore, JR, Bardos, R.P., Weeks, J.M. and Natlianail, C.P 2002. Biological methods for assessment and remediation of contaminated land: case studies. CIRIA.

Bhaumik, M., Maity, A., Snnivasu, V.V. and Onyango, M S. 2012. Removal of hexavalent chromium fi'om aqueous solution usmg polypyrrole-polyamline nanofibers. Chem. Eng. J. 181: 323-333.

Boopathy, R. 2000. Factors hunting bioremediation technologies. Bioresour. Teclinol. 74(1): 63-67.

Burgess, J.E., Parsons, S.A. and Stuetz, R.M. 2001. Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol. Adv, 19(1): 35-63.

Chang, M.C., Shu, H.Y., Hsieh, WP. and Wang, M.C. 2005. Usmg nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. J. Ah Waste Manag. Assoc. 55(8): 1200-1207.

Chemlal, R., Abdi, N., Loumci, H., Drouiche, N., Pauss, A. and Mamen, N. 2013. Modelmg and qualitative study of diesel biodegradation usmg biopile process m sandy soil. Int. Biodeter. Biodegr. 78: 43-48.

Chitra, K., Sliaravanan, S. and Vijayaragavan, M. 2011. Tobacco, com, and wheat for phytoremediation of cadmium polluted soil. Recent Res. Sci. Teclinol. 3(2): 148-151.

Coelho, L.M., Rezende, H.C., Coelho, L.M., de Sousa, PA R., Melo, D.F.O. and Coellio, N.M.M. 2015. Bioremediation of polluted waters using microorganisms, pp. 1-22. In. Shiomi, N (ed.). Advances in Bioremediation of Wastewater and Polluted Soil.

Colberg, P. J. and Young, L. Y. 1995. Anaerobic degradation of nonlialogenated homocyclic aromatic compounds coupled with nitrate, iron, or sulfate reduction, pp. 307-330. hr. Young, L.Y. and Cemiglia, C.E. (eds.). Microbial Transformation and Degradation of Toxic Organic Chemicals. New York, N.Y: Wiley-Liss.

Coulon, F., Awadi, М.А.1., Сотое, W., Mardlin, D., Pollard, S., Cunningham, C., Risdon, G., Arthur, P, Semple, K.T. and Paton, G .I. 2010. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker- fuel in a fiill-scale trial. Environ. Pollut. 158(10): 3032-3040.

De-Bashan, L.E., Hernandez, J.P. and Bashan, Y. 2012. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—A comprehensive evaluation Appl. SoilEcol. 61: 171-189.

Delille, D., Duval, A. and Pelletier, E. 2008. Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil- contammated sub-Antarctic soil. Cold Reg. Sci. Technol. 54(1): 7-18.

Dias, R.L., Rubeito, L , Calabro, A., Balbo, A.L., Del Panno, M.T. and Mac Cormack, W.P, 2015. Hydrocarbon removal and bacterial community structure m on-site biostimulated biopile systems designed for bioremediation of diesel- contaminated Antarctic soil. Polar Bio. 38(5): 677-687.

Dong, G., Wang, Y., Gong, L., Wang, M., Wang, H., He, N., Zheng, Y. and Li, Q. 2013. Formation of soluble Cr (III) end-products and nanoparticles during Cr (VI) reduction by Bacillus cereus strain XMCr-6. Biochem. Eng. J. 70: 166-172.

Dushenkov, V., Kumar, P.N., Motto, H. and Raskin, I. 1995. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 29(5): 1239-1245.

ESTCP. 2005. Environmental Security Technology Certification Program. Bioaugmentation for Remediation of Chlorinated Solvents: Tech. Development Status and Res. Needs.

EPA. 2000. Engineered Approaches to/я Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications.

EPA. 2004. How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. US Environmental Protection Agency (EPA 510-R-04-002).

EPA. 2006. Engineering Issue: In Situ and Ex Situ Biodegradation Technologies for Remediation of Contaminated Sites. EPA-625-R-06-015.

Farhan, S.N. and Khadom, A.A. 2015. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int. J. hid. Chem. 6(2): 119-130.

Feng, W., Nansheng, D. and Helm, H. 2000. Degradation mechanism of azo dye Cl reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere 41(8): 1233-1238.

Fiedler, L. 2000. Engineered approaches to in situ bioremediation of chlorinated solvents: Fundamentals and field applications. EPA Washington DC Office of Solid Waste.

Garrison, A.W., Nzengung, V.A., Avants, J.K., Ellington, J.J., Jones, W. J., Rennels, D. and Wolfe, N.L. 2000. Phytodegradation of p, p ‘-DDT and the enantiomers of o, p ‘-DDT. Environmental Science and Tech. 34(9): 1663-1670.

Ghonnade, V, Deshpande, M.V. and Pakmkar, K.M. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech. Adv. 29(6): 792-803.

Gidarakos, E. and Aivalioti, M. 2007. Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J. Hazard. Mater. 149(3): 574-581.

Gomez, F. and Sartaj, M. 2014. Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int. Biodeter. Biodegr. 89: 103-109.

Gonzalez, S.Y., Johnston, E., Gribben, PE. and Daffom, K. 2019. The application ofbioturbators for aquatic bioremediation: Review and meta-analysis. Environ. Pollut. 250(2019): 426-436.

Harms, H., Schlosser, D. and Wick, L.Y. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9(3): 177.

Hobson, A.M., Fredenckson, J. andDise.N.B. 2005. CH4 andNiO fi-om mechanically turned windrow and vemucomposting systems following in-vessel pre-treatment. Waste Manag. 25(4): 345-352.

Hohener, P and Ponsin, V. 2014. In situ vadose zone bioremediation. Current Opimon in Biotech. 27: 1-7.

Hong, S.U.I. and Xingang, L.I. 2011. Modeling for volatilization and bioremediation of toluene-contaminated soil by bioventing. Chm. J. Chem. Eng. 19(2): 340-348.

Hong, S.G., Kim, B.C., Na, H.B., Lee, J., Youn, J., Chung, S.W., Lee, C.W., Lee, B., Kim, H.S., Hsiao, E. and Kim, S.H, 2017. Single enzyme nanoparticles armored by a thin silicate network: Single enzyme caged nanoparticles. Chem. Eng. J. 322: 510-515.

ICSCS. 2006. International Centre for Soil and Contaminated Sites 2006. Manual for biological remediation techniques. 81 PP

Jan, AT., Azam, M., All, A. and Haq, Q.M.R. 2014. Prospects for exploiting bacteria for bioremediation of metal pollution. Crit. Rev. Environ. Sci. Technol. 44(5): 519-560.

Kao, C.M., Chen, C.Y., Chen, S.C., Chien, H.Y. and Chen, Y.L. 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere 70(8): 1492-1499.

Khedr, M.H., Halim, K.S.A. and Soliman, N.K. 2009. Synthesis and photocatalytic activity of nano-sized non oxides. Mater. Lett. 63(6-7): 598-601,

Knn, S., Krajmalmk-Brown, R., Kim, J O. and Chung, J. 2014. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci. Total Environ. 497: 250-259.

Knn, Y.C., Sasaki, S., Yano, K., Ikebukuro, K., Haslumoto, K. and Karube, 1.2001. Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis. Anal. Chun. Acta 432(1): 59-66.

Klimkova, S., Cemik, M., Lacinova, L. and Nosek, J. 2008. Application of nanoscale zero-valent non for groundwater remediation: laboratory and pilot experiments. Nano 3(04): 287-289.

Kuiper, I., Lagendijk, E.L., Bloemberg, G.V. and Lugtenberg, B.J.J. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Mol. Plant Microbe Interact. 17(1): 6-15.

Lee, J.H. 2013. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng. 18(3): 431-439.

Macek, T, Mackova, M. and Kas, J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18(1): 23-34.

Magalhaes, S.M.C., Jorge, R.M.F. and Castro, P.M.L. 2009. Investigations into the application of a combination of bioventing and biotnckhng filter technologies for soil decontamination processes-а transition regime between bioventing and soil vapour extraction. J. Hazard. Mater. 170(2-3): 711-715.

Mamy, L., Bamuso, E. and Gabnelle, B. 2005. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate, a resistant crops. Pest Manag. Sci. 61(9): 905-916.

McCutcheon, S.C. and Schnoor, J.L. 2004. Phytoremediation: Transformation and Control of Contaminants. Yol. 121: John Wiley & Sons.

McDonnell, G. and Russell, A.D. 2001. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 14(1): 227.

Meagher, R.B. 2000. Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Bio. 3(2): 153-162.

Mihopoulos, P.G., Sayles, G.D., Suidan, M.T., Shah, J. and Bishop, D.F. 2000. Yapor phase treatment ofPCE in a soil column by lab-scale anaerobic bioventing. Water Res. 34(12): 3231-3237.

Mohsenzadeh, F. and Rad, C.A. 2012. Bioremediation of heavy metal pollution by nano-particles of Noaea mucronata. Int. J Biosci. Biocliem. Bioinformatics 2: 85-89.

Mueller, N.C. and Nowack, B. 2009. Nanotechnology Developments for the Environment Sector. Report of the Observatory NANO.

Mueller, N.C. and Nowack, B. 2010. Nanoparticles for remediation: solving big problems with little particles. Elements 6(6): 395-tOO.

Naik, M.G. and Duraphe, M.D. 2012. Review paper on-parameters affecting bioremediation. Int. J. Life Sci. Pharma. Res. 2(3): L77-L80.

NAP. 1993. In situ bioremediation: When does it work? National Research Council. National Academes Press.

Newman, L A. and Reynolds, C.M. 2004. Phytodegradation of orgamc compounds. Curr. Opin. Biotechnol. 15(3): 225-230.

Nikolopoulou, M., Pasadakis, N., Norf, H. and Kalogerakis, N. 2013. Enhanced ex-situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Marine Poll. Bulletin 77(1-2): 37-44.

Nowack, B. 2008. Nanotechnology (Ed: Krug El). Wiley-VCS Verlag GmbEl & Co, Weinheim, 1-15.

Ojuedene, OB. and Babalola, 0.0.2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int. J. Environ. Res. Public Health 14(12): 1504.

Oyetibo, G.O., Miyauchi, K., Huang, Y., Chien, M.F., Поп, M.O., Amund, O.O. and Endo, G. 2017. Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. Int. Biodetenor. Biodegradation 119: 614-625.

Pan, G., Li, L., Zhao, D. and Chen, H 2010. Immobilization of non-point phosphorus using stabihzed magnetite nanoparticles with enhanced transportability and reactivity in soils. Environ. Pollut. 158(1): 35-40.

Parsons Corporation. 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. AFCEE, NFEC, ESTCP, https://apps.dtic.mil/sti/pdfs/ADA487293.pdf

Philp, J.C. and Atlas, R.M. 2005. Bioremediation of contaminated soils and aquifers, pp. 139-236. In: Atlas, R.M. and Plulp, J.C. (eds ). Bioremediation: Applied Microbial Solutions for Real-World Envuomnental Cleanup. American Society for Microbiology (ASM) Press, Washington.

Purakayastha, T.J., Bhadraray, S. and Clihonkar, P.K. 2009. Screening of brassica for hyper-accumulation of zmc, copper, lead, nickel and cadmium. Indian J Plant Physiol. 14: 344-352.

Rajkumar, M., Sandhya, S., Prasad, M.N.V. and Freitas, H. 2012. Perspectives of plant-associated microbes m heavy metal phytoremediation. Biotechnol. Adv. 30(6): 1562-1574.

Rickerby, D. and Morrison, M. 2007. Report fi'om the workshop on nanotechnologies for environmental remediation. JRC Ispra 200.

Rizwan, M., Singh, M., Mitra, C.K. and Morve, R.K. 2014. Ecofnendly application of nanomatenals: nano-bioremediation. J. Nanopart, https://doi.org/10.1155/2014/431787.

Rodriguez-Rodriguez, C.E., Marco-Urrea, E. and Caminal, G. 2010. Degradation of naproxen and carbamazepine in spiked sludge by slimy and solid-phase Trametes Versicolor systems. Bioresour. Teclinol. 101(7): 2259-2266.

Sakan, S.M., Djordjevic, D.S., Manojlovic, D.D. and Polic, PS. 2009. Assessment of heavy metal pollutants accumulation m the Tisza river sedunents. J. Environ. Manag. 90: 3382-3390.

San, A.M., Ravanel, P. and Raveton, M. 2013. A comparative study on the uptake and translocation of organochlorines by Phragmites australis. J. Hazard. Mater. 244: 60-69.

Shah, J.K., Sayles, G.D., Suidan, M.T., Mihopoulos, P. and Kaskassian, S. 2001. Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT. Water Sci. Technol. 43(2): 35-42.

Sharma, B., Dangi, A.K. and Shukla, P. 2018. Contemporary enzyme-based technologies for bioremediation: a review. J. Environ. Manage. 210: 10-22.

Sharma, HD. and Reddy, K.R, 2004. Geoenvu'onmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies. John Wiley & Sons.

Sharma, S. 2012. Bioremediation: features, strategies, and applications. Asian J. of Pharmacy and Life Sci. ISSN 2231: 4423.

Shayler, H., McBride, M. and Harason, E. 2009. Sources and impacts of contaminants in soils, http://cvvini.css.comell.edu/ sourcesandimpacts.pdf.

Shukla, K.P., Singh, N.K. and Sharma, S. 2012. Bioremediation: developments, current practices, and perspectives. Genet. Eng. Biotechnol. J. 3: 1-20.

Shukla, S.K., Mangvvani, N., Rao, T.S. and Das, S. 2014. Biofihn-mediated bioremediation of polycyclic aromatic hydrocarbons, pp. 203-232. In: Surajeet Das (ed.). Microbial Biodegradation and Bioremediation. DOI:: http://dx.doi. org/10.1016/В978-0-12-800021 -2 00008-X,

Silva-Castro, G.A., Uad, I, Gonzalez-Lopez, J., Fandino, C.G., Toledo, F.L. and Calvo, C. 2012. Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil usmg land fairnmg technology. Clean Technol. Environ. Policy 14(4): 719-726.

Singh, B.K. and Walker, A. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev 30:428^171.

Singh, B.K. 2009. Organophosphorus-degrading bacteria: ecology and industrial applications. Nat. Rev Microbiol. 7: 156-164,

Singh, B.K. 2010. Exploring microbial diversity for biotechnology: the way forward. Trend Biotechnol. 28: 111-116.

Singh, P.K. and Shukla, P. 2015. Systems biology as an approach for deciphering microbial interactions. Briefings Funct. Genom. Oxf. J. 14(2): 166-168. https://doi.org/10.1093/bfgp/elu023.

Stafiej, A. and Pyrzynska, K. 2007. Adsorption of heavy metal ions with carbon nanotubes. Sep. Puiif. Technol. 58(1): 49-52.

Subramaman, M., Oliver, D J and Shanks, J.V. 2006. TNT phytotransfonnation pathway characteristics in Arabidopsis: role of aromatic hydroxylamines. Biotech. Progress 22(1): 208-216.

Tiecher, T.L., Ceretta, C.A., Ferreira, P.A., Lourenzi, C.R., Tiecher, T., Girotto, E. and Cesco, S. 2016. The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma. 262: 52-61.

Todorovic, G.R. 2009. Behavior of organic pollutants in the soil environment. Special focus on glyphosate and AMPA. Air, Water, and Soil Quality 99-113.

Tomei, M.C. and Daugulis, A.J. 2013. Ex-sitn bioremediation of contaminated soils: an overview of conventional and innovative technologies. Crit. Rev. Environ. Sci. Technol. 43(20): 2107-2139.

Tratnyek, P.G. and Johnson, R.L. 2006. Nanotechnologies for environmental cleanup. Nano Today 1(2): 44-48.

USEPA. 2001a. United States Environmental Protection Agency. Use of Bioremediation at Superfund Sites. EPA 542-R-01-019.

USEPA. 2001b. United States Environmental Protection Agency. A Citizen’s Guide to Bioremediation. EPA 524-F-01-001.

Varanasi, P, Fullana, A. and Sidhu, S. 2007. Remediation of PCB contaminated soils using non nano- particles. Chemosphere 66(6): 1031-1038.

Yard, M. 2011. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater 195: 355-364.

Vazquez, S., Agha, R, Granado, A., Sarro, M.J., Esteban, E., Penalosa, J.M. and Carpena, R.O. 2006. Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Pollut. 177(1-4): 349-365.

Yerma, P,, George, K.Y, Singh, H.V., Singh, S.K., Juwarkar, A. and Singh, R.N. 2006. Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ. Model. Assess. 11(4): 387-394.

Vidali, M. 2001. Bioremediation. An overview. PureAppl. Chem. 73(7): 1163-1172.

Wang, C.T. 2007. Photocatalytic activity of nanoparticle gold/hon oxide aerogels for azo dye degradation. J. Non Cryst. Solids 353(11-12): 1126-1133.

Wang, S.Y. and Yipulanandan, C. 2001. Biodegradation of naphthalene-contaminated soils in slimy' bioreactors. J. Environ. Eng. 127(8): 748-754.

Whelan, M.J., Coulon, F., Hince, G., Rayner, J., McWatters, R., Spedding, T. and Snape, I. 2015. Fate and transport of petroleum hydrocarbons in engineered biopiles m polar regions. Chemosphere 131: 232-240.

Yadav, K.K., Singh, J.K., Gupta, N. and Kumar, V. 2017. A review of nano-bioremediation technologies for environmental cleanup: a novel biological approach. J. Mater. Environ Sci. 8(2): 740-757.

Yadav, K.K., Gupta, N., Kumar, A., Reece, L.M., Smgh, N., Rezania, S. and Khan, S.A. 2018. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol. Eng. 120: 274-298.

Yancheshmeh, J.B., Pazna, E. and Solhi, M. 2011. Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium and lead uptake by canola and barley. Aff. J. Microbiol. Res. 5(14): 1747-1754.

Yang, Z.F., Wang, Y., Shen, Z.Y., Niu, J.F. and Tang, Z.W. 2009. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard. Mater. 166(2-3): 1186-1194.

Zhang, X.J., Ji, W. and Kang, Z.J. 2009. Hannfiilness of petroleum pollutants in water and its treating techniques. Petrochem. Tech. Application 27: 181-186.

Zhang, W.X. 2003. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5(3-4): 323-332.

Zhuang, R, Yang, Q.W., Wang, H.B. and Shu, W.S. 2007. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 184(1-4): 235-242.

 
<<   CONTENTS   >>