Desktop version

Home arrow Environment

  • Increase font
  • Decrease font

<<   CONTENTS   >>

Case study

Arsenic resisting and metabolizing microorganisms isolated from various ecosystems are employed to remediate arsenic polluted soil and water. Reports from India earned out by Mondal et al. in 2014 documented both ex situ and in situ decontamination of petroleum hydrocarbons from contaminated soils using microbes. Rate of bioremediation was found to be depending on initial oil content of the sample, and geo-climatic parameters. Oil degrading microbial consortia were produced in a bioreactor and mixed in the soil of both the sites. For ex situ experiment, high density polyethylene lined were used for ex situ application, where oily wastes collected from oil fields were dumped at the site. Aeration and moisture were maintained during the experimentations. The used microbial consortia was prepared from the microbial straining previously collected from the oil-contaminated sites and screened based on then ability to degrade TPH components of oily waste. After the treatment, oily waste and ground water near the experimental sites were tested at regular interval for TPH. pH and heavy metals. Results showed a decrease of TPH content of 57.50-62.70 g/kg to

0.50 to 57.10 g/kg waste within a period of 2 to 12 months. The role of biodegradation was found to be 0.07-1.93 kg TPH/day/m: area. Heavy metals present in oily waste have no impact on the process of bioremediation.

Successfril bioremediation using switchgrass (Panicum virgutam) and plant associated microbes has been made in Pb and Cd polluted soils by Arora et al. (2016) from India. Both AM fungi and Azospirillum were taken as plant associated microbes. Experiment was conducted in pot using different concentrations of Pb and Cd. Results showed a shift in soil pH towards neutral with AMF and Azospirilhnn inoculations. An increased root length, branches surface area, along with both root and shoot biomass of switchgrass, were also noted. The calculated bioconcentration factor (BCF) for Pb (12 mg kg-1) and Cd (10 mg kg-1) was found to be 0.25 and 0.23, respectively, whereas translocation index (TI) obtained was 17.8 and 16.7, respectively, which was approximately 45% higher than control. The lower values of BCF and TI even at the highest concentration of Pb and Cd revealed the capacity of switchgr ass for accumulating high concentration of Pb and Cd in roots, while preventing the translocation of Pb and Cd to aerial biomass.


Different ecological tools are found effective in remediating the polluted soil. Significant efforts are needed to apply these ecological tools at pilot scale.

Future prospective

Mechanism of heavy metal retention, availability and subsequent assimilation of retained heavy metal is essential by materials like biochar and humic substances not only for development of cheaper ecological tools but also for future safety of the planet. Simultaneously, emphasis should be made on molecular biology to optimize the screened bioremediation process. Social aspect such as employment generation should be emphasized during planning of any bioremediatiou method which will not only attract attention from all sections of the society but also help in sustainable use of resources for conducting bioremediation activities without affecting the economy of a region. Thus, future strategy of bioremediation needs a broader vision for treating polluted soils along with sustaining soil health for benefit of the humanity.


Abatenh, E., Gizaw, B,, Tsegaye, Z. and Wassie, M. 2017. Application of microorganisms in bioremediation—review. J. Environ. Microbiol. 1(1).

Abioye, OP, Agamuthu, P, and Abdul Aziz, A.R. 2012. Biodegradation of used motor oil in soil using organic waste amendments. Biotechnol. Res. Int. doi:10.1155/2012/587041.

Al-Awadhi, N., Al-Daher, R., ElNawawy, A. and Baiba, M.T. 1996. Bioremediation of oil-contaminated soil in Kuwait. I.

Land farming to remediate oil-contaminated soil. Soil Sediment Contain. 5: 243-260.

Al-Daher, R, Al-Awadhi, N. and El-Nawawy, A. 1998. Bioremediation of damaged desert environment using the windrow soil pile system in Kuwait. Environ Int. 24: 175-180.

Alfke, G., Bunch, G., Crociani, G, Dando, D., Fontaine, M., Goodsell, P, Green, A., Hafker, W., Isaak, G., Marvillet, J., Poot, B., Sutherland, H., van der Rest, A., van Oudenhoven, J., Walden, T, Martin, E. and Schipper, H. 1999. Best Available Techniques to Reduce Emissions from Refineries—Introduction. CONCAVVE 99/01-1. CONCAVVE, Brussels, Belgium.

Ah, H., Khan, E. and Sajad, M.A. 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 91: 869-881.

Alvarenga, R, Mourinha, C., Faito, M., Santos, T., Palma, P. and Sengo, J. 2015. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manag. 40: 44- 52. doi: 10.1016/j.wasman.2015.01.027.

Alvarez, Y.M., Marques, J.M., Korenblum, E. and Seldin, L 2011. Comparative bioremediation of crude oil-amended tropical soil microcosms by natural attenuation, bioaugmentation, or bioemrchment. Appl. Environ. Soil Sci. 2011: 1-10.

Amoroso, M.J. and Abate, C.M. 2012. Bioremediation of copper, chromium and cadmium by actmomycetes from contaminated soils, pp. 349-364. In: Kothe, E. and anna A. (eds.). Bio-Geo Interactions in Metal Contaminated Soils. Yol. 31.

Andersen, J.K., Boldnn, A., Samuelsson, J., Chnstensen, T.H. and Scheutz, C. 2010. Quantification of greenhouse gas emissions from wmdrow compostmg of garden waste. J. of Environ. Quality 39(2): 713-724.

Arora, K., Sharma, S. and Monti, A. 2016. Bioremediation of Pb and Cd polluted sites by switchgrass: A case study in India. Int. J. Phytoremediation 18(7): 704-709.

Arora, N.K. 2018. Bioremediation: a green approach for restoration of polluted ecosystems. Environ. Sustain. 1: 305-307.

Azubuike, C.C., Chikere, C.B. and Okpokwasili, G.C. 2016. Bioremediation techniques—classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32: 1-18.

Baiba, M.T., Al-Daher, R., Al-Awadhi, N., Chino, H. and Tsuji, El. 1998. Bioremediation of oil-contaminated desert soil: The Kuwaiti experience. Envfron. Int. 24: 163-173.

Banat, I.M., Franzetti, A., Gangolfi, I., Bestetti, G., Martinotti, M.G., Fracclua, L., Smyth, T.J. and Merchant, R. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427-444.

Besalatpour, A., Hajabbasi, M.A., Khoshgoftarmanesh, A H. and Dorostkar, V. 2011. Landfanning process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam. 20: 234-248.

Bollag, J.M. and Bollag, W.B. 1995. Soil contamination and the feasibility of biological remediation. Bioremediation: Science and Applications, SSSA Special Publication. 43: 1-10.

Brown, D.M., Okoro, S., van Gils, J., van Spanning, R., Bonte, M., Hutchings, T, Linden, O., Egbuche, U., Bruim, K.B. and Smith, J.W.N. 2017. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons m Niger Delta soils. Sci. Total Envu'on. 596-597: 284-292.

Brown, L.D. and Ulrich, A.C. 2014. Bioremediation of oil spills on land. Handbook of Oil Spill Science and Technology 395-406,

Burlakovs, J., Klavins, M., Osinska, L. and Purmalis, O. 2013. The impact ofhumic substances as remediation agents to the speciation forms of metals in soil. APCBEE Procedia. 5: 192-196.

Bustamante, M., Duran, N. and Diez, M.C. 2012. Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J. Soil Sci. Plant Nut. 12(4): 667-687.

Cachada, A., Rocha-Santos, T. and Duarte, A.C. 2018. Soil and pollution: an introduction to the mam issues, pp. 1-28. In: Duarte, A., Cachada, A. and Rocha-Santos, T. (eds.). Soil Pollution, Academic Press.

Cerqueira, V.S., do, M., Peralba, C.R., Camargo, FA O. and Bento, F.M. 2014. Comparison of bioremediation strategies for soil unpacted with petrochemical oily sludge. Int. Biodetenor. Biodegrad. 95: 338-345.

Chaillan, F., Le Fleche, А., Вшу, E., Phantavong, Y.H., Gnmont, P, Saliot, A. and Oudot, J. 2004. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res. Microbiol. 155: 587-595.

Chibuogwu, O., Amadi, E.N. and Odu, C.T.I. 2005. Effects of soil treatments containing poultry manure on crude oil degradation in a sandy loam soil. Appl. Ecol. Environ. Res. 3(1): 47-53.

Chiistodoulatos, C. and Koutsospyros, A. 1998. Bioslurry reactors, pp. 69-103. In: Lewandowsky, G.A., DeFilippi, L.J. (eds.). Biological Treatment of Hazardous Wastes. New York: John Wiley & Sons. Inc.

Concetta Tomei, M. and Daugulis, A.J. 2013. Ex situ bioremediation of contaminated soils: An overview of conventional and innovative technologies. Crit. Rev. Environ. Sci. Technol. 43: 2107-2139.

Coulon, F., Al Awadi, M., Cowie, W., Mardlin, D., Pollard, S., Cunningham, C., Risdon, G., Arthur, P, Semple, K.T. and Paton, G.I. 2010. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker- fuel in a full-scale trial. Environ. Pollut. 158(10): 3032-3040.

Da Silva, MLB and Alvarez, P. J J. 2010. Bioaugmentation. Handbook of Hydrocarbon and Lipid Microbiology 4531-4544.

Das, N. and Chandran, P 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 2011: 1-13.

Dixit, R,, Wasiullah, Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., Shukla, R., Singh, B.P., Rai, J.P., Sharma, P.K., Lade, H. and Paul, D. 2015. Bioremediation of heavy metals from soil and aquatic envnonment: An overview of principles and criteria of fundamental processes. Sustain. 7: 2189-2212.

Domene, X. 2016. A critical analysis of meso- and macrofauna effects following biochar supplementation, pp. 268-292. In: Komang Ralebitso-Senior, T. and Caroline H. Orr (eds ). Biochar Application, Elsevier.

Duraes, N., Novo, L.A., Candeias, C. and Silva, E.F. 2018. Distribution, transport and fate of pollutants, pp. 29-57. In: Duarte, A.C., Cachada, A. and Rocha-Santos, T.A. (eds ). Soil Pollution, Academic Press.

Dzionek, A., Wojcieszynska, D. and Guzik, U. 2016. Natural carriers in bioremediation: A review. Elect. J. Biotechnol. 19(5): 28-36.

E.P.A. 2004. How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. US Environmental Protection Agency.

Fan, C.Y. and Krishnamuxthy, S. 1995. Enzymes for enhancing bioremediation of petroleum-contaminated soils: A brief review. J. An Waste Manag. Assoc. 45: 453-460.

Fangueu'o, D., Kidd, P.S., Alvarenga, P, Beesley, L. and de Yarennes, A. 2018. Strategies for soil protection and remediation, pp. 251-281. In: Armando, C., Duarte, Anabela, C. and Teresa, R.-S. (eds ). Soil Pollution. Academic Press.

Fedeiici, E., Giubilei, M., Santi, G., Zanaroli, G., Negroni, A., Fava, F., Petruccioli, M. and D’Anmbale, A. 2012. Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinustigimus. Microb. Cell Fact. 11: 1-14.

Fonseca, E.M., Baptista Neto, J.A., Mcahster, J., Smith, B., Fernandez, M.A. and Balieiro, F.C. 2013. The role of the humic substances in the fractioning of heavy metals in Rodrigo de Freitas Lagoon, Rio de Janeiro-Brazil. Anais da Academia Brasileira de Ciencias 85(4): 1289-1301.

Francis, A J. and Nancharaiah, Y.V. 2015. Л situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. Page Envnomnental Remediation and Restoration of Contaminated Nuclear and Norm Sites. Elsevier Ltd.

Frutos, F.J.G., Escolano, О, Garcia, S., Babin, M. and Fernandez, M.D. 2010. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contanunated soil. J. Hazard. Mater. 183: 806-813.

Frutos, F.J.G., Perez, R., Escolano, О , Rubio, A., Guneno, A., Fernandez, M.D., Carbonell, G., Pemcha, C. and Laguna, J. 2012. Remediation trials for hydrocarbon-contaminated sludge fi'om a soil washing process: Evaluation of bioremediation technologies. J. Hazard. Mater. 199-200: 262-271.

Gently T.J., Rensing, C. and Pepper, I.L. 2004. New approaches for bioaugmentation as a remediation technology. Crit. Rev, Environ. Sci. Technol. 34: 447^194.

Golodyaev, G.P., Kostenkov, N.M. and Oznobikhin, VI. 2009. Bioremediation of oil-contaminated soils by composting. Eurasian Soil Sci. 42: 926-35.

Gomez, F. and Sartaj, M. 2014. Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int. Biodeterior. Biodegrad. 89: 103-109.

Halvorson, A.D. 2008. Soil in the environment. Soil Science Society of America Journal 72(4): 1185.

Hazen, T.C. 2010. In situ: groundwater bioremediation, pp. 2583-2594. In: Timmis, K.N. (ed.). Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin.

Hejazi, R.F. and Husain, T. 2004. Landfarm performance under and conditions. 2. Evaluation of parameters. Environ. Sci. Technol, 38: 2457-2469,

Held, T. and Don; H. 2000. In situ remediation. Biotechnology 11(b): 350-370.

Hellekson, D. 1999. Bioventing pnnciples, applications and potential. Restor. Reclam. Rev, 5: 1-9.

Hoeppel, R.E., Hinchee, R E. and Arthur, M.F. 1991. Bioventing soils contaminated with petroleum hydrocarbons. J. Ind. Microbiol. 8: 141-146.

Hussain, A. and Hasnain, S. 2011. Phytostimulation and biofertihzation m wheat by cyanobacteria. J Ind. Microbiol. Biotechnol. 38: 85-92.

Ingle, A.P, Seabra, A.B., Duran, N. and Rai, M. 2014. Nanoremediation: a new and emerging technology for the removal of toxic contaminant from environment, pp. 233-250. In: Das, S.(ed.). Microbial Biodegradation and Bioremediation. Elsevier.

Jaffre, T, Brooks, R.R., Lee, J. and Reeves, R.D. 1976. Sebertiaacuminata-Hyperaccumulator of nickel fromNew-Caledonia. Science 193: 579-580.

Jain, P.K., Gupta, V.K., Gaur, R.K., Lowry, M., Jaroli, D.P. and Chauhan, U.K. 2011. Bioremediation of petroleum oil contaminated soil and water. Res. J. Environ. Toxicol. 5(1): 1-26.

Jan, A.T., Azam, M., All, A. and Haq, Q.M.R. 2014. Prospects for exploiting bacteria for bioremediation of metal pollution. Crit. Rev. Environ. Sci. Technol. 44: 519-560.

Jones, K.C. and de Voogt, P 1999. Persistent organic pollutants (POPs): state of the science. Environ. Pollut. 100: 209-221.

Jutsz, A.M. and Gmda, A. 2015. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Arch. Environ. Prot. 41: 104-114.

Kaczorek, E., Pacholak, A., Zdarta, A. and Smulek, W. 2018. The impact of biosurfactants on microbial cell properties leading to hydrocarbon bioavailability increase. Colloids and Interfaces 2(3): 35.

Kao, C.M., Chen, C.Y., Chen, S.C., Chien, H.Y. and Chen, Y.L. 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere 70: 1492-1499.

Karigar, C.S. and Rao, S.S. 2011. Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Res. 2011: 805187.

Kazy, S.K., D’Souza, S.F. and Sar, P. 2009. Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization. J. Hazard. Mater. 163: 65-72.

Khan, F.I., Husain, T. and Hejazi, R. 2004. An overview and analysis of site remediation technologies. J. Environ Manage. 71: 95-122.

Kim, S., Krajmalnik-Brown, R, Kim, J O. and Chung, J. 2014. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci. Total Envnon. 497: 250-259.

Krishna, K.R. and Philip, L. 2011. Bioremediation of smgle and mixture of pesticide contaminated soils by mixed pesticide- enriched cultures. Appl. Biochem. Biotechnol. 164: 1257.

Lau, K.L., Tsang, Y.Y. and Chiu, S.W. 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52(9): 1539-1546.

Lee, G.F. and Jones-Lee, A. 1997. Hazardous chemical site remediation through capping: Problems with long-term protection. Remediation 7: 51-57.

Lee, K., Park, J.W. and Ahn, I.S. 2003. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas panda G7. J Hazard, Mater. B105: 157-167.

Lei, L., Khodadoust, A.P., Suidan, M.T. and Tabak, H.H. 2005. Biodegradation of sediment-bound PAHs in field-contaminated sediment. Water Res. 39: 349-361.

Lunmer, M. and Burken, J. 2016. Phytovolatilization of orgamc contaminants. Environ. Sci. Technol. 50: 6632-6643.

Lin, T.C., Pan, P.T. and Cheng, S.S. 2010. Ex situ bioremediation of oil-contaminated soil. J. Hazard. Mater. 176: 27-34.

Liu, L., Li, W., Song, W. and Guo, M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633: 206-219.

Mahmood, Q., Mirza, N. and Shalieen, S. 2015. Phytoremediation using algae and macrophytes: I. pp. 265-289. In. Ansan, A., Gill, S., Gill, R, Lanza, G. and Newman, L. (eds). Phytoremediation. Springer. Cham.

Maila, M.P. and Cloete, T.E. 2004. Bioremediation of petroleum hydrocarbons through landfarming: Are sunplicity and cost- effectiveness the only advantages? Rev. Environ. Sci. Biotechnol. 3: 349-360.

Mam, D. and Kumar, C. 2014. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11: 843-872.

Mesjasz-Przybylowicz, J., Nakomeczny, M., Migula, P, Augustymak, M., Tamawska, M., Reunold, W.U., Koeberl, C., Przybylowicz, W. and Glowacka, E. 2004. Uptake of cadmium, lead nickel and zinc from soil and water solutions by the mckel hyperaccumulator Berklieyacoddu. Acta Biol. Cracoviensia Ser. Bot. 46: 75-85.

Miller, R.R, 1996. Bioslurping: Technology Overview Report. Analysis.

Miller, R.M. 1995. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Persp. 103(suppl 1): 59-62.

Min, K., Freeman, C., Kang, H. and Choi, S. 2015. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. BioMed. Res. Intern. Article ID 825098.

Muanda, R D C., De Souza, C.S., Gomes, E.D.B.,Lovaglio, R.B., Lopes, C.E and Sousa,M.D.F.Y.D.Q. 2007 Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the State of Pemambuco-Brazil. Brazilian Arch. Biol. Technol. 50: 147-152.

Mohan, S.V., Punishotham Reddy, B. and Samia, P.N. 2009. Ex situ slimy phase bioremediation of chrysene contaminated soil with the function of metabolic function: Process evaluation by data enveloping analysis (DEA) and Taguclu design of experimental methodology (DOE) Bioresour. Technol. 100: 164-172.

Mondal, A.J., Jana, A., Dutta, A., Priyangshu, M., Saima, B.L. and Dutta, J. 2014. Monitoring ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case study. J. Natu. Res. Dev. 4: 65-74.

Montiel-Rozas, M.M., Lopez-Garcia, A., Kjoller, R., Madejon, E. and Rosendahl, S. 2016. Organic amendments increase phylogenetic diversity of arbuscular mycoirluzal fungi in acid soil contaminated by trace elements. Mycorrhiza 26: 575-585. doi: 10.1007/s00572-016-0694-3.

Morgan, P. and Atlas, R.M. 1989. Hydrocarbon degradation in soils and methods for soil biotreatment. Crit. Rev. Biotechnol. 8: 305-333.

Mrozik, A. and Piotrowska-Seget, Z. 2010. Bioaugmentation as a strategy for cleamng up of soils contaminated with aromatic compounds. Microbiol. Res. 165: 363-375.

Mukhopadhyay, S. and Maiti, S.K. 2010. Phytoremediation of metal mine waste. Appl. Ecol. Environ. Res. 8: 207-222.

Nester, E.W., Denise, G., Anderson, C., Roberts Jr., E., Pearsall, N.N. and Nester, M.T. 2001. Microbiology: A Human Perspective. 3rd ed. New York: McGraw-Hill.

Newman, LA. and Reynolds, C.M. 2004. Phytodegradation of orgamc compounds. Curr Opin. Biotechnol. 15(3): 225-230.

Nikolopoulou, M. and Kalogerakis, N. 2016. Ex situ bioremediation treatment (Landfarming). Hydrocarb. Lipid Microbiol. Protoc. 195-220.

Nzila, A., Razzak, S.A. and Zhu, J. 2016. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. Int. J. Environ. Res. Public Health 13.

Ojuedene, OB. and Babalola, 0.0.2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health 14.

Pacwa-Plocmiczak, M., Plaza, G.A., Piotrowska-Seget, Z. and Cameotra, S.S. 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12(1): 633-654.

Pacyna J. 2011. Environmental emissions of selected persistent organic pollutants, pp. 49-56. In: Quante, M., Ebinghaus, R. and Floser, G. (eds ). Persistent Pollution-Past, Present and Future, Springer.

Pal, S., Patra, A.K., Reza, S.K., Wildi, W. and Pote-Wembonyama, J. 2010. Use of bio-resources for remediation of soil pollution. Nat. Res. 1(2): 110-125.

Parween, T, Bhandan, P, Sharma, R., Jan, S., Siddiqui, Z.H and Patanjah, P.K. 2018. Bioremediation: a sustainable tool to prevent pesticide pollution, pp. 215-227. In: Oves, M., Zain Khan, M. and. Ismail, M.I. (eds.). Modem Age Env-uonmental Problems and their Remediation. Sponger, Cham.

Patrnha, C., Armienta, A., Argyraki, A. and Duraes, N. 2018. Inorganic pollutants in soils, pp. 127-159. In: Armando, CD., Anabela, C. and Teresa, R.-S. (eds.). Soil Pollution. Academic Press.

Paudyn, K, Rutter, A., Kerry Rowe, R. and Poland, J.S. 200S. Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarmmg. Cold Reg. Sci. Technol. 53: 102-114.

Perelo, L.W. 2010. In situ and bioremediation of organic pollutants in aquatic sedunents. J. Hazard. Mater. 177(1-3): 81-89.

Petersen, S.O. 2018. Greenhouse gas emissions from liquid dairy manure: prediction and mitigation. J. dairy Sci. 101(7): 6642-6654.

Philp, J.C. and Atlas, R.M. 2005. Bioremediation of contaminated soils and aquifers, pp. 139-236. In: Atlas, R, and Philip, J. (eds ). Bioremediation. American Society of Microbiology.

Piccolo, A. 1989. Reactivity of added humic substances towards plant available heavy metals in soils. Sci. Tot. Env. 81: 607-614.

Place, M., Hoeppel, R., Chaudhry, T, McCall, S. and Williamson, T. 2003. Application Guide for Bioslurping, Principles and Practices of Bioslurping, Addendum: Use of Pre-Pump Separation for Improved Bioslurper System Operation. White Pap. 1-20.

Quintero, J.C., Moreira, M.T., Lema, J.M. and Feijoo, G. 2006. An anaerobic bioreactor allows the efficient degradation of HCH isomers in soil slurry. Chemosphere 63: 1005-1013.

Rada, E.C., Andreottola, G., Istrate, I.A., Viotti, P., Conti, F. and Magaril, E.R. 2019. Remediation of soil polluted by organic compounds through chemical oxidation and phytoremediation combined with DCT. Int. J. Env. Res. Pub. He. 16(17): 3179.

Radziemska, M., Gusiatin, Z.M. and Bilgin, A. 2017. Potential of using unmobilizing agents in aided phytostabilization on sunulated contammation of soil with lead. Ecol. Eng. 102: 490-500.

Rangarajan, Y. andNarayanan, M. 201S. Biosurfactants msoilbioremediation. pp. 193-204. In: Adhya, T, Lai, B., Mohapatra, B.,Paul,D. and Das, S. (eds.). Advances m Soil Microbiology: Recent Trends and Future Prospects. Springer, Singapore.

Rayu S., Karpouzas, D.G. and Singh, B.K. 2012. Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation 23: 917-926.

Reeve, J.R., Hoagland, L.A., Yillalba, J.J., Cair, P.M., Atucha, A., Cambardella, C. and Delate, K. 2016. Organic farmmg, soil health, and food quality: considering possible links, pp. 319-367. In: Donald L. Sparks (ed.). Adv. Agron. 137: Academic Press.

Reeves, R.D. and Baker, A.J.M. 2000. Phytoremediation of toxic metals: usmg plants to clean up the environment. Metal- accumulating Plants. pp. 193-229.

Rizzo, A.C.D.L., Dos Santos, R D M., Dos Santos, R.L.C., Soriano, A.U., Da Cunlia, C D., Rosado, A S., Sobral, L.G.D.S. and Leite, S.G.F. 2010. Petroleum-contaminated soil remediation in a new solid phase bioreactor. J Chem. Technol. Biotechnol. 85: 1260-1267.

Robles-Gonzalez, I.V., Fava, F. and Poggi-Л araldo, H.M. 2008. A review on slurry bioreactors for bioremediation of soils and sediments. Microb. Cell Fact. 7: 1-16.

Rodrigues, S.M. and Romkens, P.F. 2018. Human health risks and soil pollution, pp. 217-250. In: Annando C. Duarte, Anabela Cachada and Teresa Rocha-Santos (eds ). Soil Pollution. Academic Press.

Rodriguez-Rodriguez, C.E., Marco-Urrea, E. and Caminal, G. 2010. Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour. Technol. 101: 2259-2266.

Romero-Gonzalez, M., Nwaobi, B.C., Hufton, J.M. and Gilmour, D.J. 2016. Ex-situ bioremediation of U (T) from contaminated mine water usmg acidithiobacillusferrooxidans strains. Front. Environ. Sci. 4: 1-11.

Romic, M. 2012. Bioavailability of trace metals in terrestrial environment: methodological issues. Eur. Chem. Bull. 1(11): 489-493.

Ron, E.Z. and Rosenberg, E. 2002. Biosurfactants and oil bioremediation. Current Opinion in Biotechnology 13: 249-252.

Rubilar, O., Tortella, G., Cea, M., Acevedo, F., Bustamante, M., Gianfreda, L. and Diez, M.C. 2011. Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white rot fungi. Biodegradation 22: 31-41.

Saenz-Marta, C.I., de Lourdes Ballinas-Casarrubias, M., Rivera-Chavira, B.E. and Nevarez-Moonllon, G.V. 2015. Biosurfactants as useful tools m bioremediation. Advances in Bioremediation of Wastewater and Polluted Soil, pp. 94-109.

Saha, J.K., Selladurai, R., Coumar, M.V., Dotamya, M.L., Kundu, S. and Patra, A.K. 2017. Major inorganic pollutants affecting soil and crop quality', pp. 75-104. In: Eric, L., Agroe, C., Dijon, Jan, S., Didier, R. and Saint, A. (eds.). Soil Pollution—An Emerging Threat to Agriculture. Springer, Singapore.

Salt, D.E., Blaylock, M., Kumar, N.P., Dushenkov, V, Ensley, B.D., Chet, I. and Raskin, I. 1995. Phydoremediation: Anovel strategy for the removal of toxic elements from the environment using plants. Biotechnology 13: 468-474.

Sanscartier, D., Zeeb, B.,Koch, I. and Renner, K. 2009. Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg. Sci. Technol. 55: 167-173.

Semple, K.T., Reid, B.J. andFermor, T.R. 2001. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 112: 269-283.

Sen, R. and Chakrabarti, S. 2009. Biotechnology—applications to environmental remediation m resource exploitation. Curr. Sci. pp. 768-775.

Seple, K.T., Reid, В J. and Fennor, T.R. 2001. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Env. Poll. 112(2): 269-283.

Shi, W., Norton, J.M., Miller, B.E. and Pace, M.G. 1999. Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dauy waste composts. Appl. Soil Ecol. 11: 17-28.

Silva-Castro, G.A., Uad, I., Rodriguez-Calvo, A., Gonzalez-Lopez, J. and Calvo, C. 2015. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environ. Res. 137: 49-58.

Simarro, R, Gonzalez, N., Bautista, L.F. and Molina, M.C. 2013. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: Change in bacterial community. J. Hazard. Mater. 262: 158-67.

Smith, E., Thavamam, P, Ramadass, K., Naidu, R., Srivastava, P. and Megharaj, M. 2015. Remediation trials for hydrocarbon- contaminated soils in and environments: Evaluation of bioslurry and biopilmg techniques. Int. Biodeterior. Biodegrad. 101: 56-65.

Smith, S.R, 2009. A critical review of the bioavailability and impacts and heavy metals m municipal solid waste compost compared to sewage sludge. Environ. Int. 35: 142-156.

Stojic, N., Strbac, S. and Prokic, D. 2018. Soil pollution and remediation, pp. 1-34. In: Hussain, C. (ed ). Handbook of Environmental Materials Management.

Sukkanyah, B.F., Evanylo, G., Zelazny, L. and Chaney, R.L. 2005 Cadmium, copper, nickel, and zinc availability m a biosolids-amended piedmont soil years after application, J. Environ. Qual. 34: 2255-2262.

Sun, H., Trabue, S.L., Scoggin, K., Jackson, W.A., Pan, Y. and Zhao, Y. 2008, Alcohol, volatile fatty acid, phenol, and methane emissions from dairy cows and fresh manure. J. Environ. Qual. 37: 615-622.

Suthersan, S.S. and Payne F.C. 2004. In situ Remediation Engineering, 1st edition, CRC Press 1-487.

Tahn, N., Baliafid, W, Sayel, H. and El Ghachtouli, N. 2013. Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegrad. - Life Sci. 56194.

Так, H I., Ahmad, F. and Babalola, O.O. 2013. Advances in the application of plant growth-promoting rhizobactena in phytoremediation of heavy metals. Rev, Envnon. Contain. Toxicol. 223: 33-52.

Thomaidi, Y.S., Stasinakis, A.S., Borova, V.S. and Thomaidis, N.S. 2016. Assessing the risk associated with the presence of emerging organic contaminants m sludge-amended soil: a country-level analysis. Sci. Total Environ. 548-549: 280-288.

Tomei, M.C. and Daugulis, A.J. 2013. Ex situ bioremediation of contaminated soils: An overview of conventional an innovative technologies. Crit. Rev Environ. Sci. Technol. 43: 2107-39.

Urzelai, A., Vega, M. and Angulo, E. 2000. Deriving ecological nsk-based soil quality values in the Basque Country. Sci. Tot. Env. 247: 279-284.

US Environmental Protection Agency (USEPA). 1995. How to evaluate alternative cleanup technologies for underground storage tank sites.

Usman, M.M., Dadrasma, A., Lim, K.T., Mahmud, A.F. and Ismail, S. 2016. Application of biosurfactants in envnonmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering 3(3): 289-304.

Van Der Nat, F.J.W.a. and Middelburg, J J 1998. Seasonal variation in methane oxidation by the rhizosphere of Plnagmites australis and Scupuslacustris. Aquat. Bot. 61: 95-110.

Verbruggen, N., Hermans, C. and Schat, H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist. 181(4): 759-776.

Yijayakumar, S. and Saravanan, V. 2015. Biosurfactants—types, sources and applications. Res. J. Microbiol. 10(5): 181-92.

Walker, C.H., Hoplm, Sibley, S.P andPeakall, D.B. 2001. Principles ofEcotoxicology. Seconded., Taylor* Francis, London.

Wang, S., Xu, Y., Norbu, N. and Wang, Z. 2018a. Remediation of biochar on heavy metal polluted soils. In IOP Conference Series: Earth and Env Sci. 108(4): 042113.

Wang, W., Simomch, S.L.M., Xue, M., Zhao, J., Zhang, N. and Wang, R. 2000. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons m soils from Beijing, Tianjin and surrounding mareas, North China. Environ. Pollut. 158: 1245-1251.

Wang, Y., Xu, Y., Li, D , Tang, B., Man, S., Jia, Y. and Xu, H. 2018b. Yemucompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid ram stress. Sci. Tot. Env. 621: 1057-1065.

Whelan, M.J., Coulon, F., Hince, G., Rayner, J., McWatters, R., Spedding, T. and Snape, I. 2015. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131: 232-240.

Williams, J. 2002. Bioremediation of Contaminated Soils: A comparison of in situ and ex situ techniques. Available at: http://

Woo, S.H. and Park, J.M. 1999. Evaluation of drum bioreactor performance used for decontamination of soil polluted with polycyclic aromatic hydrocarbons. J. Chem. Technol. Biotechnol. 74: 937-944.

Wuana, R.A., Okieimen, F.E. and Yesuwe, R.N. 2014. Mixed pollutant interactions in soil: implications for bioavailability, risk assessment and remediation, Afr. J. Environ. Sci. Technol. 8(12): 691-706.

Yadav, K.K., Gupta, N., Kumar, V. and Singh, J.K. 2017. Bioremediation of heavy metals from contaminated sites using potential species: A review. Indian J. Envu'on. Prot. 37: 65-84.

Yang, L.Y., Wang, L.T., Ma, J.H., Ma, E.D., Li, J.Y. and Gong, M. 2017. Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates m tobacco (Nicotiana tabacum L.) plants. Photosynthetica 55: 1-11.

Yang, Z. X., S.Q. Liu, D.W. Zheng, and S.D. Feng. 2006. Effects of cadium, zinc and lead on soil enzyme activities. J Env, Sci. 18(6): pp.1135-1141.

Zahoor, M., Irshad, M., Ralnnan, H., Qasim, M., Afiidi, S.G., Qadir, M. and Hussain, A. 2017. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol. Environ. Saf. 142: 139-149.

Zhou, D M, Hao, X.Z., Wang, Y.J., Dong, Y.H. and Cang, L. 2005. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere 59: 167-175.

Zhu, X., Yenosa, A.D., Suidan, M.T. and Lee, K. 2004. Guidelines for the Bioremediation of Oil-Contaminated Salt Marshes. National Risk Management Research Laboratoiy Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.


<<   CONTENTS   >>

Related topics