Desktop version

Home arrow Environment

  • Increase font
  • Decrease font


<<   CONTENTS

Bioremediation of chlorinated organic compounds

Contamination of the environment by solvents is an important aspect resulting from improper handling and disposing of chloroethenes such as tetrachloroethene (PCE) or trichloroethene (TCE) (Barton et al. 2007). Specific strains of SRB can use chloroethene as electron acceptor in sulphate limited environment (Table 1).

The EU produced by the Desulfovibrio sp. from fermentation of lactate under the sulphate limiting condition was used by delialogenating bacteria (Drzyzga et al. 2001). The reductive release of chloride from TCE is shown in Figure 1.

Mixed culture of SRB showed greater delialogenation than pure culture of D.frctppieri (Drzyzga et al. 2001). Pure culture of D.frctppieri metabolizes PCE, which results in the accumulation of cis-dicliloroetliane. However, delialogenation of PCE by mixed culture results in the production of 55% etheue and 45% ethane (Drzyzga et al. 2002).

Table 1. SRB that metabolize chlorinated organic compounds.

Substrate

Organism

Reference

Tetracliloroethene and/or polychloroethenes

Desulfitobacterium frappieri TCE1 Desulfitobacterium sp. PCE-1

Genitseetal. 1999 Gemtse et al. 1996

Desulfitobacteriimi frappieri PCP1

Dennie et al. 1998

Desulfitobacterium frappieri TCE1 Desulfitobacterium sp. Vietl

Drzyzga et al. 2001 Loeffleretal. 1999

Desulfitobacterium sp. Y51 Desulfitobacterium hafiiiense Y51

Suyama et al. 2001 Nonaka et al. 2006

Desulfitobacterium sp. KBC1

Tsukagoshi et al. 2006

Microbial reductive delialogenation (A) trichloroethane (B) ethane, [2H] indicate proton from the cell

Figure 1. Microbial reductive delialogenation (A) trichloroethane (B) ethane, [2H] indicate proton from the cell.

Future applications: energy recovery as a dual advantage

Yun et al. (2019) conducted a study to recover energy during waste water treatment using SRB by designing a SRB-based wastewater treatment system integrated with sulphide fuel cell (SFC). The ratio of COD and sulphate was a critical parameter in this process. They could achieve sulphate reduction coupled with electricity production, which is highlighted as a green and effective method of wastewater treatment.

Conclusions

Concern regarding the fate of sulphate and heavy metals in various types of industrial wastewater and sewage water has been growing. Biological method is the most common method used for the treatment of xenobiotics in the effluents released from industrial sites. Biological treatments are more cost effective than physical and chemical treatments, and help to maintain the ecological balance and reestablishment of polluted environments. SRB are one of the most common groups of microorganisms used for the biological anaerobic treatment of sulphate and heavy metal containing wastewater. Clearly, the synergism among SRB and other anaerobes is important in the bioremediation process, and future investigations are expected to enhance these ecological frameworks.

References

Ayangbenro, A S., Olanrewaju, O.S. and Babalola, O.O. 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front. Microbiol. 9: 1986.

Barton, L.L. and Hamilton, W.A. (eds.). 2007. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press.

Bottcher, M.E., Thamdmp, B., Gehre, M. and Theune, A. 2005. 34S/32S and 180/160 fractionation during sulfur disproportionation by Desulfobulbus propionicus. Geomicrobiol. J. 22(5): 219-226.

Castro, H.F., Williams, N.H. and Ogram, A. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol. 31(1): 1-9.

Cypionka, H. 2000. Oxygen respiration by Desulfovibno species. Annu. Rev. Microbiol. 54(1): 827-848.

Dries, J., De Smul, A., Goethals, L., Grootaerd, H. and Verstraete, W. 1998. High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation 9(2): 103-111.

Drzyzga, O., Gemtse, J., Dijk, J.A., Elissen, H. and Gottschal, J.C. 2001. Coexistence of a sulphate-reducing Desulfovibno species and the dehalorespmng Desulfitobacterium frappieri TCE1 m defined chemostat cultures grown with various combmations of sulphate and tetrachloroethene. Environ. Microbiol. 3(2): 92-99.

Fang, H.H., Liu, Y. and Chen, T, 1997. Effect of sulfate on anaerobic degradation of benzoate in UASB reactors. J. Environ. Eng. 123(4): 320-328.

Fareleira, R, Santos, B.S., Antonio, C., Moradas-Ferreira, P., LeGall, J., Xavier, A.Y. and Santos, H. 2003. Response of a strict anaerobe to oxygen: survival strategies in Desulfovibno gigas. Microbiology 149(6): 1513-1522.

Fauque, G., LeGall, J. and Barton, L.L 1991. Sulfate-reducing and sulfur-reducing bacteria. Variations m autotrophic hfe, 271-337.

Fauque, G. D. 1995. Ecology of sulfate-reducing bacteria. Sulfate-Reducing Bacteria. Springer, Boston, MA. 217-241.

Finster, K., Liesack, W. and Thamdrup, B.O. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64(1): 119-125.

Guha, S. and Bhargava, P. 2005. Removal of chromium fi'om synthetic plating waste by zero-valent iron and sulfate-reducing bacteria. Water Environ. Res. 77(4): 411-416.

Goulhen, F., Gloter, A., Guyot, F. and Bruschi, M. 2006. Cr (VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Appl. Microbiol. Biotechnol. 71(6): 892-897.

Hao, OX, Chen, J.M., Huang, L. and Buglass, R.L. 1996. Sulfate-reducing bacteria. Crit. Rev. Environ. Sci. Technol. 26(2): 155-187.

Hsu, H.F., Jhuo, Y.S., Kumar, M., Ma, Y.S. and Lin, J.G. 2010. Sunultaneous sulfate reduction and copper removal by a PYA- unmobilized sulfate reducing bacterial culture. Bioresour. Technol. 101(12): 4354-4361.

Ito, T, Okabe, S., Satoh, H. and Watanabe, Y. 2002. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofihn growing under nncroaerophilic conditions. Appl. Environ. Microbiol. 68(3): 1392-1402.

Itoh, T., Suzuki, K.I. and Nakase, T. 1998. Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int. J. Syst. Evol. Microbiol. 48(3): 879-887.

Itoh, T., Suzuki, K.I., Sanchez, PC. and Nakase, T. 1999. Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rodshaped crenarchaeote isolated from a hot spring in the Philippines. Int. J. Syst. Evol. Microbiol. 49(3): 1157-1163.

Jalali, K. and Baldwin, S.A. 2000. The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions. Water Res. 34(3): 797-806.

Jiang, W. and Fan, W. 2008. Bioremediation of heavy metal-contaminated soils by sulfate-reducing bacteria. Ann. N. Y. Acad. Sci. 1140(1): 446-454.

Jonkers, H.M., van Der Maarel, M.J., van Gemerden, H. and Hansen, Т.А. 1996. Dunethylsulfoxide reduction by marine sulfate-reducing bacteria. FEMS Microbiol. Lett. 136(3): 283-287.

Knobel, A.N. and Lewis, A.E. 2002. A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Res. 36(1): 257-265.

Krekeler, D. and Cypionka, H. 1995. The preferred electron acceptor of Desulfovibno desulfuncans CSN. FEMS Microbial. Ecol. 17(4): 271-277.

Lens, P, Vallerol, M., Esposito, G. and Zandvoort, M. 2002. Perspectives of sulfate reducing bioreactors m environmental biotechnology. Rev. Envuon. Sci. Biotechnol. 1(4): 311-325.

Li, H, Liu, T, Li, Z. and Deng, L. 2008. Low-cost supports used to immobilize fungi and reliable technique for removal hexavalent chromium in wastewater. Bioresour. Technol. 99(7): 2234-2241.

Liu, X., Hu, Q., Fang, Z., Zhang, X. and Zhang, B. 2009. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25(1): 3-8.

Loubmoux, I, Bronowicki, J.P., Pereira, I.A., Mougenel, J.L. and Le Faou, A.E. 2002. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40(2): 107-112.

Lovley, D.R., Giovannoni, S.J., White, D C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A. and Goodwin, S. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of orgamc compounds to the reduction of non and other metals. Arch. Microbiol. 159(4): 336-344.

Lovley, DR., Holmes, D.E. and Nevin, K.P 2004. Dissimilatory Fe (III) and Mn (IV) reduction. Advan. in Microbial Physiol. 49(2): 219-286.

Malik, A. 2004. Metal bioremediation through growing cells. Environ. Int. 30(2): 261-278.

Meumer, N., Laroulandie, J., Blais, J.F. and Tyagi, R.D. 2003. Cocoa shells for heavy metal removal from acidic solutions. Bioresour. Technol. 90(3): 255-263.

Mori, K., Kim, H., Kakegawa, T. and Hanada, S. 2003. A novel lmeage of sulfate-reducing microorganisms: Thennodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov, a new thermophilic isolate from a hot spring. Extremophiles 7(4): 283-290.

Muyzer, G. and Stams, A.J. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6(6): 441—454.

Ollivier, B., Cayol, J.L. and Fauque, G. 2007. Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents. Sulphate-Reducing Bacteria: Environ, and Engineered Syst. 305-328.

Omil, F.,Lens, P, Pol, L H andLettinga, G. 1996. Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulpludogemc granular sludge reactor. Process Biochem. 31(7): 699-710.

Pagnanelli, F., Viggi, C.C. and Toro, L. 2010. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: biosorption versus bioprecipitation. Bioresource Technol. 101(9): 2981-2987.

Percheron, G., Bemet, N. and Moletta, R, 1997. Start-up of anaerobic digestion of sulfate wastewater. Bioresour. Technol. 61(1): 21-27.

Postgate, J.R. 1984. The Sulphate-reducing Bacteria, second ed. Cambridge University Press, New York.

Rabus, R.A.L.F., Hansen, Т.А. and Widdel, FRIEDRICH. 2006. Dissimilatory sulfate-and sulfur-reducing prokaryotes. The Prokaryotes 2: 659-768.

Sanyal, A., Rautaray, D , Bansal, V., Ahmad, A. and Sastry, M. 2005. Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir 21(16): 7220-7224.

Sahinkaya, E., Gunes, F.M., Ucar, D. and Kaksonen, A H. 2011. Sulfidogemc fluidized bed treatment of real acid mine drainage water. Bioresour. Technol. 102(2): 683-689.

Sass, H., Steuber, J., Rroder, M., Kroneck, P.M.H. and Cypionka, H. 1992. Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria. Arch, of Microbial. 158(6): 418-421.

Sheng, Y., Cao, H., Li, Y. and Zhang, Y. 2011. Effects of sulfide on sulfate reducmg bacteria in response to Си (II), Hg (II) and Cr (VI) toxicity. Chinese Sci. Bull. 56(9): 862.

Silva, A.J.D., Varesche, M B., Foresti, E. and Zaiat, M. 2002. Sulphate removal from industrial wastewater using a packed- bed anaerobic reactor. Process Biochem. 37(9): 927-935.

Torbaghan, M E. and Torghabeh, G.H.K. 2019. Biological removal of iron and sulfate from synthetic wastewater of cotton deluding factoiy by using halophilic sulfate-reducing bacteria. Heliyon 5(12): e02948.

Tomei, F.A., Barton, L.L., Lemanski, C.L., Zocco, T.G., Fmk, N.H. and Sillenid, L.O. 1995. Transformation of selenate and selenite to elemental selenium by Desiilfovibrio desutfuricans. J. of Ind. Microbiol. 14(3-4): 329-336.

Utgikar, V.P., Tabak, H.H., Haines, J.R. andGovind, R. 2003. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria. Biotechnol. Bioeng. 82(3): 306-312.

van den Brand, T, Snip, L., Palmen, L., Weij, P., Sipma, J. and van Loosdrecht, M. 2018. Sulfate reducmg bacteria applied to domestic wastewater. Water Pract. Technol. 13(3): 542-554.

Venkata Mohan, S. and Sarma P.N. 2002. Anaerobic treatment of pharmaceutical wastewater. Biomed. Pharmacol. J. 2: 101-108.

Venkata Mohan, S., Chandrasekhara Rao, N., Krishna Prasad, K., Murali Krishna, P, Sreenivas Rao, R. and Sarma, P.N. 2005. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: Process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology. Biotechnol. Bioeng. 90(6): 732-745.

Vincent, S.G.T., Reshmi, R.R., Hassan, S.J., Nair, K.D. and Varma, A. 2017. Predominant terminal electron accepting processes during organic matter degradation: Spatio-temporal changes in Ashtamudi estuary, Kerala, India. Estuar. Coast. Shelf Sci. 198: 508-517.

Vincke, E., Boon, N. and Verstiaete, W. 2001. Analysis of the microbial communities on corroded concrete sewer pipes-a case study. Appl. Microbiol. Biotechnol. 57(5-6): 776-785.

Yisser, A., Beeksma, I., Van der Zee, F., Stams, A.J.M. and Lettinga, G. 1993. Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl. Microbiol. Biotechnol. 40(4): 549-556.

Volesky, B. and Holan, Z.R. 1995. Biosoiption of heavy metals. Biotechnol. progress, 11(3): 235-250.

White, C., Sayer, J.A. andGadd, G.M. 1997. Microbial solubilization and umnobilization of toxic metals: keybiogeochemical processes for treatment of contamination. FEMS Microbiol. Rev 20(3-4): 503-516.

Ye, J., Ym, H., Mai, B., Peng, H., Qin, H., He, B. and Zhang, N. 2010. Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresour. Technol 101(11): 3893-3902.

Yun, Y.M., Lee, E., Kun, K. and Han, J.I. 2019. Sulfate reducing bactena-based wastewater treatment system integrated with sulfide fuel cell for simultaneous wastewater treatment and electricity generation. Chemosphere 233: 570-578.

Zhang, L., Lin, X., Wang, J., Jiang, E, Wei, L., Chen, G. and Hao, X. 2016. Effects of lead and mercury on sulfate-reducing bacterial activity in a biological process for flue gas desulfurization wastewater treatment. Sci. Rep. 6: 30455.

Zhou, Q., Chen, Y., Yang, M., Li, W. and Deng, L. 2013. Enhanced bioremediation of heavy' metal from effluent by sulfate- reducing bacteria with copper-iron bunetallic particles support. Bioresour. Technol. 136: 413-417.

 
<<   CONTENTS

Related topics