Desktop version

Home arrow Sociology arrow Understanding Society and Natural Resources

The Need for Sense of Place

Every environmental crisis is different from the last or the next: a major earthquake in southern California will require different response than an oil spill in the Gulf of Mexico or a severe tornado in Oklahoma. Even similar crises have place-based differences: an Alaskan Arctic oil spill differs from a Gulf of Mexico oil spill in technology, impacts, response, and restoration/recovery strategies. Depending on where and when the crisis occurs and the severity of damage, people in the affected region are impacted differently – the result of factors including geographic location, socioeconomic status, and sociocultural traits. Hence, science during environmental crises must work with an accurate sense of place. Crisis science teams must rely heavily on members with local knowledge who can provide place-specific information on communities, cultures, values, history, and environment that can be essential to assessing risk and responding to unfolding events during a crisis.

The Demands of Communicating Science During Crisis

Effectively communicating science is essential if the scientific information is to be used under the rapidly changing conditions, constrained time frames, multiple demands on decision makers, and limited resources that are typical during a crisis. First and foremost, scientific information must be communicated with extraordinary clarity and conciseness. Because the information may be used by non-scientific audiences, technical terms should be well defined if they must be used. Explanation of results, findings, uncertainties and implications must take priority over descriptions of background, relevant literature, or methods.

Communicating science during crisis can also benefit from the use of compelling visualization. An example emerged during the Deepwater Horizon oil spill when graphic artists developed schematic diagrams of the broken pipe on the seafloor. Derived from observations made with remotely operated vehicles, these visualizations aided scientists, responders, decision makers, and the public in understanding the complexity of the damaged riser pipe over 1,500 m below the surface of the Gulf. Presentation tools – ranging from sketchpads to visualization software and mobile tablets – can be useful for translating scientific information quickly and efficiently during a crisis.

To be effective in supporting decision making, science (and scientists) during crisis should have the capacity to speak “truth to power,” delivering difficult or unpopular findings or analyses. Direct access to decision-makers is essential. Access requires trust. As shown in many of the previous examples, scientific information can be pivotal for decision making during a crisis. It must be delivered directly to decision makers unfettered by layers of bureaucracy and/or the public diversion of “science by interview” (whereby competing scientists present their personal views to reporters and/or commentators) now fashionable in the contemporary media.

Issues of transparency and public right-to-know are considerable, and must be adjudicated carefully. Post-crisis publication through peer reviewed literature and third-party evaluation are both potential solutions. However, while science during crisis should have access to decision-makers (and vice versa), it is the responsibility of the scientists involved to maintain their independence and credibility and role as “honest brokers” (Pielke 2007) by presenting information rather than attempting to make policy or response decisions. For trust (and thereby access), it is essential that this distinction be maintained in communications between scientists and decision makers during crisis.

Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >

Related topics