Desktop version

Home arrow Health

  • Increase font
  • Decrease font


<<   CONTENTS   >>

OTHER APPLICATIONS

PVP is used for other kinds of applications as given below:

  • 1. Optical and electrical applications;
  • 2. Membranes;
  • 3. Adhesives;
  • 4. Ceramics;
  • 5. Paper, coatings, and inks;
  • 6. Household, industrial;
  • 7. Photographic and lithographic applications;
  • 8. Textile;
  • 9. Environmental use;
  • 10. Fibers.
  • 4.5.1 OPTICAL AND ELECTRICAL APPLICATIONS

PVP based materials are used in screens, PCB (printed circuit boards), Cathode ray tubes, storage devices, and solar cells. The function of PVP is like a dispersant in PCB. PVP based metal nanoparticle confirms the use in flexible photonics and electronics, medical imaging, optical biosensors. Gold and Silver nanoparticles incorporated PVP composites are used for different optical devices. Nanoparticles of silver covered PVP are used in interconnections, microelectronics, bio-MEMS implants, and microfluidic devices. Conducting inks based on polypyrrole-Ag nanoparticles incorporated by PVP is used as a protection agent. For the use in printed electronics, ceramic capacitors PVP bounded metallic nanoparticles found extensive applications. PVP is also used as a surface modifier in many applications and PVP coated Nickel nanocomposites were used in MLCC electrodes and printed electronics.

Various kinds of nanoparticles, nanorods, and nanocubes included PVP is used to control particle size as well as particle aggregation. In many composites, PVP is mainly used as a stabilizer and filler. It can be used in satellite devices, energy dissipation, and low thermal expansions [179].

Vanadium oxide-PVP composites are generally used in lithium-ion batteries. These products show high mechanical strength, dimensional stability, and high electrical conductivity. Solar cells and dye-sensitized cells based PVP materials have found remarkable properties. In Nickel-Cd and NiH batteries), the function of PVP is as a coating agent, binder, and an adhesive. Thus, the use of PVP in energy storage devices has considerably higher effect comparing to other applications.

4.5.2 MEMBRANES

PVP is considered as an efficient additive for membrane fabrication, nano, micro, and macro filtration process in hemodialysis, wastewater treatment, gas separation and many others. Its excellent compatibility with variety of compounds and strong polar nature makes it a successive polymer for wide range of applications. Poly(acrylonitrile copolymerized with butadiene- styrene-PVP membrane is used in water treatment, pharmaceutical, and biotechnology applications. PES coated PVP membrane is usually used in water purification studies. PVP is a versatile polymer used as a template to create well-organized mesoporous silica for enzyme immobilization reactions. The extensive use of PVP as hydrophilizer in membranes and PPO-PVP blends are used in carbon molecular sieving (CMS) membranes.

4.5.3 ADHESIVES

The application of PVP in this area strikes the non-toxic nature and hence can be used in medical adhesives for special care such as wound dressing and medical electrodes. Adhesive films made up of PVP have superior adherence character to metals, plastics, PET, PU polymers, minerals, and textile. It shows superior property as a dispersant in many polymers and pigments.

4.5.4 CERAMICS

PVP function as stress-relieving agent in ceramic films and a binder in high-temperature fire prepared products. PVP is when added with clay minerals; it is used in fields such as soil science and geochemistry. The wide application of PVP as a binder at high temperature fire prepared products. The manufacture of yellow ceramic pigment with Ag NPs was identified by Mastre et al. PVP is also used as a stabilizer and adsorbent for colloidal clay minerals.

4.5.5 PAPER, COATINGS, AND INKS

PVP has a wide variety of applications such as coatings, inks, dispersions, waxes, etc. The function of this polymer in paints depicted as a protective colloid like substance and leveling agent. Another major role tends its superior dye adsorption capacity.

4.5.6 HOUSEHOLD, INDUSTRIAL, PHOTOGRAPHIC, AND LITHOGRAPHIC APPLICATIONS

The extensive applicational areas include cosmetics and detergents, and products from industry level provide excellent compatible nature and dimensional stability. The use of PVP in lithographic studies is the formation of patterns in films [180-182].

4.5.7 TEXTILE, FIBERS, AND ENVIRONMENTAL

For the synthesis of glass, plastics, and fibers, PVP is a commonly used material. It is generally used in the dying process in textiles and printing domains. These polymer-based fabrics are commonly used in surgical cloths, wound cloths, and sports wear. Waste-water purification, oil, and dye removal, etc., are other major roles of PVP. Filters incorporated by PVP (TiO,-PVP) are used in self-cleaning and water filtration purposes. Studies relating that these compositions have a greater effect on gastronomical diseases.

4.6 CONCLUSION

The world of clinical and experimental medicine is enormous, vibrant, and diverse. The present chapter describes the vast properties of the polyvinylpyrrolidone polymer. Polyvinylpyrrolidone has numerous applications which include medical and nomnedical. The diverse nature of PVP is useful to research in all direction and this review is absolutely benefitted to readers. PVP has incredible opportunities in future research and developments and this particular polymer has extensive properties and uses in other areas such as optical and electrical, fibers, ceramics, and paper, coatings, and inks, household applications, photographic, and lithographic studies. But the pharmaceutical industry and medicine is the most recognizing field for PVP polymers. The chapter reviews the wide sectors and detailed areas of PVP polymer.

KEYWORDS [1] [2]

  • [1] • adhesives • carbon molecular sieving • ceramics • lithographic applications • N-vinylpyrrolidone
  • [2] printed circuit boards
 
<<   CONTENTS   >>

Related topics