Desktop version
Home
Mathematics
>>
Physics of Magnetic Thin Films: Theory and Simulation
I: Basic Theory of Magnetism
Spin: Origin of Magnetism
Introduction
Paramagnetism of a Free-Electron Gas
Paramagnetism of a System of Free Atoms
Diamagnetism of Many-Electron Atoms
Magnetic Interactions in Solids
Exchange Interaction: Origin of Magnetism
Spin Models: Magnetic Materials
Heisenberg Model
Ising, XY, Potts Models
Conclusion
Problems
Mean-Field Theory of Magnetic Materials
Mean-Field Theory of Ferromagnets
Mean-Field Equation
Mean-Field Critical Temperature
Graphical Solution
Specific Heat
Susceptibility
Validity of Mean-Field Theory
Antiferromagnetism in Mean-Field Theory
Mean-Field Theory
Spin Orientation in a Strong Applied Magnetic Field
Phase Transition in an Applied Magnetic Field
Ferrimagnetism in Mean-Field Theory
Conclusion
Problems
Theory of Spin Waves
Spin Waves in Ferromagnets
Classical Treatment
Quantum Spin Wave Theory: Holstein–Primakoff Approximation
Properties at Low Temperatures
Magnetization
Energy and heat capacity
Spin Waves in Antiferromagnets
Dispersion Relation
Properties at Low Temperatures
Energy
Magnetization at low temperatures
Spin Waves in Ferrimagnets
Spin Waves in Helimagnets
Conclusion
Problems
Green’s Function Theory in Magnetism
Green’s Function Method
Definition
Formulation
Ferromagnetism by the Green’s Function Method
Equation of Motion
Dispersion Relation
Magnetization and Critical Temperature
Antiferromagnetism by the Green’s Function Method
Green’s Function Method for Non-Collinear Magnets
Conclusion
Problems
Theory of Phase Transitions and Critical Phenomena
Introduction
Symmetry Breaking: Order Parameter
Order of a Phase Transition
Correlation Function: Correlation Length
Critical Exponents
Universality Class
Improved Mean-Field Theory: Bethe’s Approximation
Landau–Ginzburg Theory
Mean-Field Critical Exponents
Correlation Function
Corrections to Mean-Field Theory
Renormalization Group
Transformation of the Renormalization Group: Fixed Point
Renormalization Group Applied to an Ising-Spin Chain
Migdal–Kadanoff Decimation Method: Migdal–Kadanoff Bond-Moving Approximation
Transfer-Matrix Method
Phase Transition in Particular Systems
Exactly Solved Spin Systems
Kosterlitz–Thouless Transition
Frustrated Spin Systems
Conclusion
Problems
Monte Carlo Simulation: Principle and Implementation
Principle of Monte Carlo Simulation
Simple Sampling
Importance Sampling
Implementation: Construction of a Computer Program
Phase Transition as Seen in Monte Carlo Simulations
Finite-Size Scaling Laws
Second-Order Phase Transition
First-Order Phase Transition
Error Estimations
Autocorrelation
Size Effects on Errors
Advanced Techniques in Monte Carlo Simulations
Cluster-Flip Algorithm
Histogram Method
Multiple-Histogram Technique
Wang–Landau Flat-Histogram Method
Conclusion
II: Magnetism of Thin Films
Exactly Solved Frustrated Models in Two Dimensions
Introduction
Frustration
Definition
Non-Collinear Ground-State Spin Configurations
Exactly Solved Frustrated Models
Example of the Decimation Method
Disorder Line, Reentrance
Phase Diagram
Kagomé Lattice
Model with NN and NNN interactions
Generalized Kagomé lattice
Centered Honeycomb Lattice
Centered Square Lattices
Other Exactly Solved Models
Evidence of Partial Disorder and Reentrance in Non-Solvable Frustrated Systems
Re-Orientation Transition in Molecular Thin Films: Potts Model with Dipolar Interaction
Two-Dimensional Case
Thin Films
Effect of Surface Exchange Interaction
Conclusion
Spin Wave Theory for Thin Films
Surface Effects
Surface Effects in Magnetism
Surface Magnons
Reconstruction of Surface Magnetic Ordering
Surface Phase Transition
Semi-Infinite Solids
Spin Wave Theory in Ferromagnetic Films
Method
Film of stacked triangular lattices
Film of simple cubic lattice
Film of body-centered cubic lattice
Results
Spin wave spectrum
Layer magnetizations
Antiferromagnetic Films
Films of Simple Cubic Lattice
Films of Body-Centered Cubic Lattice
Conclusion
Problems
Frustrated Thin Films of Antiferromagnetic FCC Lattice
Introduction
Model and Classical Ground-State Analysis
Monte Carlo Results
Green’s Function Results
Concluding Remarks
Heisenberg Thin Films with Frustrated Surfaces
Introduction
Model
Hamiltonian
Ground State
Green’s Function Method
Formalism
Phase Transition and Phase Diagram of the Quantum Case
Monte Carlo Results
Concluding Remarks
Phase Transition in Helimagnetic Thin Films
Introduction
Model and Classical Ground State
Green’s Function Method
General Formulation for Non-Collinear Magnets
BCC Helimagnetic Films
Spin Waves: Results from the Green’s Function Method
Spectrum
Spin Contraction at T = 0 and Transition Temperature
Layer Magnetizations
Effect of Anisotropy and Surface Parameters
Effect of the Film Thickness
Classical Helimagnetic Films: Monte Carlo Simulation
Simple Cubic Helimagnetic Films
Conclusion
Partial Phase Transition in Helimagnetic Thin Films in a Field
Introduction
Model: Determination of the Classical Ground State
Phase Transition
Results of 12-Layer Film
Effects of the Film Thickness
Quantum Fluctuations, Layer Magnetizations and Spin Wave Spectrum
Conclusion
Spin Waves in Systems with Dzyaloshinskii-Moriya Interaction
Introduction
Model and Ground State
Self-Consistent Green’s Function Method: Formulation
Two and Three Dimensions: Spin Wave Spectrum and Magnetization
The Case of a Thin Film: Spin Wave Spectrum, Layer Magnetizations
Discussion and Experimental Suggestion
Concluding Remarks
Skyrmions in Thin Films
Introduction: Magnetic Field Effect, Excitations of Skyrmions
Model and Ground State
Skyrmion Crystal: Phase Transition
Stability of Skyrmion Crystal at Finite Temperatures
Skyrmion Crystal: Effect of Lattice Elasticity
Triangulated Lattices and Skyrmion Model
Results
Conclusion
Skyrmions in Superlattices
Introduction
Model and Ground State
Model
Ground State
Ground state in zero magnetic field
Ground state in applied magnetic field
Skyrmion Phase Transition: Monte Carlo Results
Spin Waves in Zero Field
Monolayer
Bilayer
Frustration Effect: J1 − J2 model
Model
Ground State
Skyrmion Phase Transition
Conclusion
Thin Films and Criticality
Introduction
Model and Method
Model
Multiple-Histogram Technique
The Case of Films with Finite Thickness
Results: Critical Exponents
Finite-Size Scaling
Larger Sizes and Correction to Scaling
Role of Boundary Conditions
Crossover from First- to Second-Order Transition in a Frustrated Thin Film
Model and Ground-State Analysis
Monte Carlo Results
Crossover of the phase transition
Film with 4 atomic layers(Nz = 2)
Concluding Remarks
Spin Resistivity in Thin Films
Introduction
Model
Interactions
Choice of Parameters and Units
Simulation Method
Spin Resistivity in Ferromagnets and Antiferromagnets
Spin Resistivity in Frustrated Systems
Simple Cubic J1 − J2 Model
Fully Frustrated Face-Centered Cubic Antiferromagnet
Results for the Ising case
Surface Effects
Results for the Heisenberg Case
Remarks
Surface Effects in a Multilayer
The Case of MnTe
Conclusion
III: Solutions to Exercises and Problems
Solutions to Exercises and Problems
Solutions to Problems of Chapter 1
Solutions to Problems of Chapter 2
Solutions to Problems of Chapter 3
Solutions to Problems of Chapter 4
Solutions to Problems of Chapter 5
Solutions to Problems of Chapter 8
A.1 Introduction
A.2 Isolated Systems: Microcanonical Description
A.2.1 Fundamental Postulate
A.2.2 Applications
A.2.2.1 Two-level systems
A.2.2.2 Classical ideal gas
A.3 Systems at Constant Temperature: Canonical Description
A.3.1.1 Two-level systems
A.3.1.2 Classical ideal gas
A.4 Open Systems at Constant Temperature: Grand-Canonical Description
A.4.1 Applications
A.5 Fermi–Dirac and Bose–Einstein Statistics
A.6 Phase Space: Density of States
A.6.1 Definition
A.6.2 Density of States of a Free Particle in Three Dimensions
A.7 Properties of a Free Fermi Gas at T = 0
A.7.1 Fermi Energy
A.7.2 Total Average Kinetic Energy
A.8 Properties of a Free Fermi Gas at Low Temperatures
A.8.1 Sommerfeld’s Expansion
A.8.2 Chemical Potential, Average Energy and Calorific Capacity
A.9 Free Fermi Gas at the High-Temperature Limit
Appendix B Second Quantization
B.1 First Quantization: Symmetric and Antisymmetric Wave Functions
B.2 Second Quantization: Representation of Microstates by Occupation Numbers
B.2.1 The Case of Bosons
B.2.2 The Case of Fermions
>>
Related topics
Academic library - free online college e textbooks - info{at}ebrary.net - © 2014 - 2023