Desktop version

Home arrow Computer Science arrow Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment

Source

References

  • 1. Kocher P, Jaffe J, Jun B. Differential power analysis. In: Wiener M, editor. Advances in cryptology CRYPTO ’99, vol. 1666. LNCS, Springer; 1999. p. 388-97.
  • 2. Gandolfi K, Mourtel C, Olivier F. Electromagnetic analysis: concrete results. In: Proceedings of third international work-shop, Cryptographic hardware and embedded systems—CHES 2001, Paris, France, May 14-16, 2001. Generators; 2001. p. 251-61. doi:10.1007/3-540-44709-1_ 21. http://dx.doi.org/10.1007/3-540-44709-1_21.
  • 3. Quisquater J-J, Samyde D. Electro magnetic analysis (EMA): measures and counter-measures for smart cards. In: Proceedings of the international conference on research in smart cards: smart card programming and security. E-SMART ’01. London, UK, UK: Springer; 2001. p. 200-10. ISBN:3-540-42610-8. http://dl.acm.org/citation.cfm?id=646803.705980.
  • 4. Kocher PC. Timing attacks on implementations of Diffe-Hellman, RSA, DSS, and other systems. In: Koblitz N, editor. Advances in cryptology CRYPTO ’96, vol. 1109. LNCS, Springer; 1996. p. 104-13.
  • 5. Schramm K, Wollinger T, Paar C. A new class of collision attacks and its application to DES. In: Johansson T, editor. Fast software encryption, vol. 2887. LNCS, Springer; 2003. p. 206-22.
  • 6. Miller VS. Use of elliptic curves in cryptography. In: Williams HC, editor. Proceedings of advances in cryptology—CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, vol. 218. Lecture notes in computer science. Springer; 1985. p. 417-26. ISBN:3-540-16463-4. doi:10.1007/3-540-39799-X_31. http://dx.doi.org/10.1007/3-540-39799-X_31.
  • 7. Koblitz N. Elliptic curve cryptosystems. Math Comput. 1987;48:203-9.
  • 8. Blake NSI, SeroussiG. Advances in elliptic curve cryptography, vol. 317. Cambridge University Press; 1999.
  • 9. ANSI-X9.62. Public key cryptography for the financial services industry: the elliptic curve digital signature algorithm (ECDSA), 1998.
  • 10. ANSI-X9.63. Public key cryptography for the financial services industry: key agreement and key transport using elliptic curve cryptography, 1998.
  • 11. BSI. RFC 5639—Elliptic curve cryptography (ECC) brainpool standard curves and curve generation. Technical report Bundesamt fur Sicherheit in der Informationstechnik (BSI), 2010.
  • 12. NIST. FIPS Publication 186-4—Digital signature standard (DSS). Tech. rep. National Institute of Standards and Technology (NIST), 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS. 186-4.pdf.
  • 13. Bosma W, Lenstra H. Complete systems of two addition laws for elliptic curves. J Number Theory 1995;53(2):229-40. ISSN:0022-314X. http://dx.doi.org/10.1006/jnth.1995.1088. http://www.sciencedirect.com/science/article/pii/S0022314X85710888.
  • 14. Renes J, Costello C, Batina L. Complete addition formulas for prime order elliptic curves. In: Fischlin M, Coron J-S, editors. Proceedings of progress in cryptology EUROCRYPT 2016 (35th international conference on cryptology in Europe, Vienna, Austria, May 8-12, 2016), vol. 9665. LNCS, Springer. p. 403-28.
  • 15. Edwards HM. A normal form for elliptic curves. In: Kof ?K, Paar C, editors. Bulletin of the American mathematical society, vol. 44. 2007. p. 393-422. http://www.ams.org/journals/bull/ 2007-44-03/S0273-0979-07-01153-6/home.html.
  • 16. Bernstein DJ, Lange T. A complete set of addition laws for incomplete Edwards curves. In: IACR cryptology ePrint archive 2009. p. 580. http://eprint.iacr.org/2009/580.
  • 17. Bernstein DJ, Lange T. Faster addition and doubling on elliptic curves. In: Kurosawa K, editor. Advances in cryptology ASIACRYPT 2007, vol. 4833. LNCS, Springer; 2007. p. 29-56. http:// cr.yp.to/papers.html#newelliptic.
  • 18. Bernstein DJ, Birkner P, Joye M, Lange T, Peters C. Twisted edwards curves. In: Vaudenay S, editor. Progress in cryptology AFRICACRYPT 2008, vol. 5023. LNCS, Springer; 2008, p. 389-405. http://cr.yp.to/papers.html/#twisted.
  • 19. Bernstein DJ, Lange T. Explicit formulas database. http://www.hyperelliptic.org/EFD/.
  • 20. Montgomery PL. Speeding the pollard and elliptic curve methods of factorization. Math Comput. 1987;48(177):243-64.
  • 21. Stam M. On montgomery-like representations for elliptic curves over GF(2k). In: Desmedt YG, editor. Proceedings of public key cryptography PKC 2003: 6th international workshop on practice and theory in public key cryptography Miami, FL, USA, January 6-8, 2003. Berlin, Heidelberg: Springer;2002. p. 240-54. ISBN: 978-3-540-36288-3. doi:10.1007/3-540-36288- 6_18. http://dx.doi.org/10.1007/3-540-36288-6_18.
  • 22. Izu T, Moller B, Takagi T. Improved elliptic curve multiplication methods resistant against side channel attacks. In: Progress in cryptology—INDOCRYPT2002, third international conference on cryptology in India, Hyderabad, India, December 16-18, 2002. p. 296-313. doi:10.1007/ 3-540-36231-2_24. http://dx.doi.org/10.1007/3-540-36231-2_24.
  • 23. Okeya K, Kurumatani H, Sakurai K. Elliptic curves with the montgomery-form and their cryptographic applications. In: Proceedings public key cryptography, third international workshop on practice and theory in public key cryptography, PKC 2000, Melbourne, Victoria, Australia, January 18-20, 2000. p. 238-57. doi:10.1007/978-3-540-46588-1_17. http://dx. doi.org/10.1007/978-3-540-46588-1_17.
  • 24. Bernstein DJ, Chuengsatiansup C, Kohel D, Lange T. Twisted hessian curves. In: Proceedings of progress in cryptology—LATINCRYPT 2015—4th international conference on cryptology and information security in Latin America, Guadalajara, Mexico, August 23-26,2015. p. 26994. doi:10.1007/978-3-319-22174-8_15. http://dx.doi.org/10.1007/978-3-319-22174-8_15.
  • 25. Hisil H, Wong KK-H, Carter G, Dawson E. Faster group operations on elliptic curves. In: Brankovic L, Susilo W, editors. Seventh Australasian information security conference (AISC 2009), vol. 98. CRPIT. Wellington, New Zealand: ACS; 2009. p. 7-19.
  • 26. Joye M, Quisquater J. Hessian elliptic curves and side-channel attacks. In: Proceedings of Cryptographic hardware and embedded systems—CHES 2001, third international workshop, Paris, France, May 14-16, 2001. Generators, 2001. p. 402-10. doi:10.1007/3-540-44709-1_ 33. http://dx.doi.org/10.1007/3-540-44709-1_33.
  • 27. Farashahi RR, Joye M. Effcient arithmetic on hessian curves. In: Proceedings of Public key cryptography—PKC 2010, 13th international conference on practice and theory in public key cryptography, Paris, France, May 26-28, 2010. p. 243-60. doi:10.1007/978-3-642-13013-7_ 15. http://dx.doi.org/10.1007/978-3-642-13013-7_15.
  • 28. Cohen H, Miyaji A, Ono T. Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta K, Pei D, editors. Proceedings of advances in cryptology—ASIACRYPT ’98, international conference on the theory and applications of cryptology and information security, Beijing, China, October 18-22, 1998. Lecture notes in computer science, vol. 1514. Springer; 1998. p. 51-65. ISBN: 3-540-65109-8. doi:10.1007/3-540-49649-1_6. http://dx.doi.org/10.1007/3- 540-49649-1_6.
  • 29. Coron J. Resistance against differential power analysis for elliptic curve cryptosystems. In: Kof ?K, Paar C, editors. Proceedings of cryptographic hardware and embedded systems, first international workshop, CHES ’99, Worcester, MA, USA, August 12-13, 1999. Lecture notes in computer science, vol. 1717. Springer; 1999. p. 292-302. ISBN: 3-540-66646-X. doi:10. 1007/3-540-48059-5_25. http://dx.doi.org/10.1007/3-540-48059-5_025.
  • 30. Rivain M. Fast and regular algorithms for scalar multiplication over elliptic curves. In: IACR Cryptology ePrint Archive, 2011. p. 338. http://eprint.iacr.org/2011/338.
  • 31. Coron J-S. Resistance against differential power analysis for elliptic curve cryptosystems. In: Kof ?K, Paar C, editors. Cryptographic hardware and embedded systems CHES’99, vol. 1717. LNCS, Springer; 1999. p. 292-302. http://saluc.engr.uconn.edu/refs/sidechannel/ coron99resistance.pdf.
  • 32. Joye M. Highly regular right-to-left algorithms for scalar multiplication. In: Paillier P, Ver- bauwhede I, editors. Cryptographic hardware and embedded systems CHES 2007, vol. 4727. LNCS, Springer; 2007. p. 135-47.
  • 33. Joye M, Yen S. The montgomery powering ladder. In: Kaliski BS, Kof ?K, Paar C, editors. Cryptographic hardware and embedded systems CHES 2002, vol. 2523. LNCS, Springer; 2002. p. 291-302.
  • 34. Chevallier-Mames B, Ciet M, Joye M. Low-cost solutions for preventing simple sidechannel analysis: side-channel atomicity. IEEE Trans Comput. 2004;53(6):760-8.
  • 35. Benger N, van de Pol J, Smart NP, Yarom Y. Ooh aah... just a little bit: a small amount of side channel can go along way. In: Proceedings of cryptographic hardware and embedded systems— CHES 2014—16th international workshop, Busan, South Korea, September 23-26, 2014. p. 75-92. doi:10.1007/978-3-662-44709-3_5. http://dx.doi.org/10.1007/978-3-662-44709- 3_5.
  • 36. Romer T, Seifert J. Information leakage attacks against smart card implementations of the elliptic curve digital signature algorithm. In: Attali I, Jensen T, editors. Smart card programming and security, vol. 2140. LNCS, Springer; 2001. p. 211-19.
  • 37. Fouque P-A, Valette F. The doubling attack why upwards is better than downwards. In: Walter CD, Kof ?K, Paar C, editors. Cryptographic hardware and embedded systems CHES 2003, vol. 2779. LNCS, Springer; 2003. p. 269-80.
  • 38. Walter CD. Sliding windows succumbs to big mac attack. In: Kof ?K, Naccache D, Paar C, editors. Cryptographic hardware and embedded systems CHES 2001, vol. 2162. LNCS, Springer; 2001. p. 286-99.
  • 39. Yen S, Ko L, Moon S, Ha J. Relative doubling attack against montgomery ladder. In: Won DH, Kim S, editors. Information security and cryptology ICISC 2005, vol. 3935. LNCS, Springer; 2005. p. 117-28.
  • 40. Homma N, Miyamoto A, Aoki T, Satoh A, Shamir A. Collision-based power analysis of modular exponentiation using chosen-message pairs. In: Oswald E, Rohatgi P, editors. Cryptographic hardware and embedded systems—CHES 2008, vol. 5154. LNCS, Springer; 2008. p. 15-29.
  • 41. Bauer A, Jaulmes E, Prouff E, Wild J. Horizontal collision correlation attack on elliptic curves. In: Lange T, Lauter K, Lisonek P, editors. Selected areas in cryptography, vol. 8282. LNCS, Springer; 2014. p. 553-70.
  • 42. Medwed M, Oswald E. Template attacks on ECDSA. In: Chung K-I, Sohn K, Yung M, editors. Information security applications, vol. 5379. LNCS, Springer; 2009. p. 14-27.
  • 43. Mulder ED, Hutter M, Marson ME, Pearson P. Using bleichenbacher’s solution to the hidden number problem to attack nonce leaks in 384-Bit ECDSA. In: Bertoni G, Coron J-S, editors. Cryptographic hardware and embedded systems CHES 2013, vol. 8086. LNCS, Springer; 2013. p. 435-52. https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=71281.
  • 44. Hanley N, Kim H, Tunstall M. Exploiting collisions in addition chain-based expo-nentiation algorithms using a single trace. Cryptology ePrint Archive, Report 2012/485.2012.
  • 45. Wenger E, Korak T, Kirschbaum M. Analyzing side-channel leakage of RFID suitable lightweight ECC hardware. In: Hutter M, Schmidt J-M, editors. Radio frequency identification, vol. 8262. LNCS, Springer; 2013. p. 128-44.
  • 46. Clavier C, Feix B, Gagnerot G, Roussellet M, Verneuil V. Horizontal correlation analysis on exponentiation. In: Soriano M, Qing S, Lopez J, editors. Information and communications security, vol. 6476. LNCS, Springer; 2010. p. 46-61.
  • 47. Bauer A, Jaulmes E, Prouff E, Wild J. Horizontal and vertical side-channel attacks against secure RSA implementations. In: Proceedings topics in cryptology—CT-RSA 2013—the cryptographers’ track at the RSA conference 2013, San Francisco,CA, USA, February 25-March 1, 2013. p. 1-17. doi:10.1007/978-3-642-36095-4_1. http://dx.doi.org/10.1007/978-3-642- 36095-4_1.
  • 48. Witteman M, van Woudenberg J, Menarini F. Defeating RSA multiply-always and message blinding countermeasures. In: Kiayias A, editor. Topics in cryptology CT-RSA 2011, vol. 6558. LNCS, Springer; 2011. p. 77-88.
  • 49. Clavier C, FeixB, Gagnerot G, Giraud C, Roussellet M, Verneuil V. ROSETTA for single trace analysis. In: Galbraith S, Nandi M, editors. Progress in cryptology INDOCRYPT 2012, vol. 7668. LNCS, Springer; 2012. p. 140-55.
  • 50. Bauer A, Jaulmes E. Correlation analysis against protected SFM implementations of RSA. In: Proceedings progress in cryptology—INDOCRYPT 2013—14th international conference on cryptology in India, Mumbai, India, December 7-10, 2013. p. 98-115. doi:10.1007/978-3- 319-03515-4_7. http://dx.doi.org/10.1007/978-3-319-03515-4_7.
  • 51. Feix B, Roussellet M, Venelli A. Side-channel analysis on blinded regular scalar multiplications. Cryptology ePrint Archive, Report 2014/191. http://eprint.iacr.org/.2014.
  • 52. Chari S, Rao JR, Rohatgi P. Template attacks. In: Cryptographic hardware and embedded systems—CHES 2002, 4th international workshop, Redwood Shores, CA, USA, August 1315, 2002, Revised Papers. 2002. p. 13-28. doi:10.1007/3-540-36400-5_3. http://dx.doi.org/ 10.1007/3-540-36400-5_3.
  • 53. Rechberger C, Oswald ME. Practical template attacks. In: Lim CH, Yung M, editors. Information security applications, vol. 3325. Lecture notes in computer science. Springer; 2004. p. 440-56.
  • 54. Mulder ED, Buysschaert P, Ors SB, Delmotte P, Preneel B, Vandenbosch G, Verbauwhede I. Electromagnetic analysis attack on an FPGA implementation of an elliptic curve cryptosystem. In: IEEE international conference on computer as a tool. Belgrade, Serbia & Montenegro; 2005. p. 1879-82. doi:10.1109/EURC0N.2005.1630348. http://www.sps.ele.tue.nl/members/ m.j.bastiaans/spc/demulder.pdf.
  • 55. AvanziRM. Generic algorithms for computing discrete logarithms. In: Handbook of elliptic and hyperelliptic curve cryptography, 2005. p. 476-94. doi:10.1201/9781420034981.pt5. http://dx. doi.org/10.1201/9781420034981.pt5.
  • 56. Pollard JM. Kangaroos, monopoly and discrete logarithms. J. Crypt. 2000;13(4):437-47. doi:10.1007/s001450010010. http://dx.doi.org/10.1007/s001450010010.
  • 57. Lange T, van Vredendaal C, Wakker M. Kangaroos in side-channel attacks. In:Smart card research and advanced applications—13th international conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised selected papers. 2014. p. 104-21. doi:10.1007/978- 3-319-16763-3_7. http://dx.doi.org/10.1007/978-3-319-16763-3_7.
  • 58. Heyszl J, Ibing A, Mangard S, Santis FD, Sigl G. Clustering algorithms for non-profiled singleexecution attacks on exponentiations. In: Smart card research and advanced applications— 12th international conference, CARDIS 2013. Berlin, Germany, November 27-29, 2013. Revised Selected papers. 2013. p. 79-93. doi:10.1007/978-3-319-08302-5_6. http://dx.doi. org/10.1007/978-3-319-08302-5_6.
  • 59. Perin G, Imbert L, Torres L, Maurine P. Attacking randomized exponentiations using unsupervised learning. In: Constructive side-channel analysis and secure design—5th international workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised selected papers, 2014. p. 144-60. doi:10.1007/978-3-319-10175-0_11. http://dx.doi.org/10.1007/978-3-319- 10175-0_11.
  • 60. Lerman L, Poussier R, Bontempi G, Markowitch O, Standaert F-X. Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard S, Poschmann AY, editors. Constructive side-channel analysis and secure design. Lecture notes in computer science (LNCS). Springer; 2015. p. 20-33.
  • 61. Specht R, Heyszl J, KleinsteuberM, SiglG. Improving non-profiled attacks on exponentiations based on clustering and extracting leakage from multi-channel high-resolution EM measurements. In: Constructive side-channel analysis and secure design—6th international workshop, COSADE 2015, Berlin, Germany, April 13-14, 2015. Revised selected papers, 2015. p. 3-19. doi:10.1007/978-3-319-21476-4_1. http://dx.doi.org/10.1007/978-3-319-21476-4_1.
  • 62. Ozgen E, Papachristodoulou L, Batina L. Classifcation algorithms for template matching. In: IEEE international symposium on hardware oriented security and trust, HOST 2016, McLean, VA, USA; 2016 (to appear).
  • 63. Bramer M. Chapter 3, introduction to classifcation: naive bayes and nearest neighbour. In: Principles of data mining. undergraduate topics in computer science. London: Springer; 2013. p. 21-37. ISBN: 978-1-4471-4883-8. doi:10.1007/978-1-4471-4884-5_3. http://dx.doi.org/ 10.1007/978-1-4471-4884-5_3.
  • 64. Alpaydin E. Chapter 13, kernel machines. In: Introduction to machine learning.
  • 65. Batina L, Chmielewski L, Papachristodoulou L, Schwabe P, Tunstall M. Online template attacks. In: Proceedings progress in cryptology—INDOCRYPT 2014—15th international conference on cryptology in India, New Delhi, India, December 14-17, 2014. p. 21-36.
  • 66. Dugardin M, Papachristodoulou L, Najm Z, Batina L, Danger J, Guilley S. Dismantling real- world ECC with horizontal and vertical template attacks. In: Constructive side-channel analysis and secure design—7th international workshop, COSADE 2016, Graz, Austria, April 14-15, 2016 (to appear).
  • 67. Corporation A. ATMEL AVR32UC technical reference manual. ARM Doc Rev.32002F, 2010. http://www.atmel.com/images/doc32002.pdf.
  • 68. Hutter M, Schwabe P. NaCl on 8-bit AVR microcontrollers. In: Youssef A, Nitaj A, editors. Progress in cryptology AFRICACRYPT 2013, vol. 7918. LNCS, Springer; 2013. p. 156-72.
  • 69. Bernstein DJ, Duif N, Lange T, Schwabe P, Yang BY. High-speed high-security signatures. In: Preneel B, Takagi T, editors. Cryptographic hardware and embedded systems CHES 2011, vol. 6917. LNCS. see also full version [14]. Springer;2011, p. 124-42.
  • 70. Bernstein DJ, Duif N, Lange T, Schwabe P, Yang B-Y. High-speed high-security signatures. J Crypt Eng. 2012;2(2):77-89. http://cryptojedi.org/papers/#ed25519, see also short version [13].
  • 71. Hisil H, Wong KK-H, Carter G, Dawson E. Revisited edwards curves. In: Pieprzyk J, editor. Advances in cryptology ASIACRYPT, vol. 5350. LNCS, Springer; 2008. p. 326-43.
  • 72. Joye M, Tymen C. Protections against differential analysis for elliptic curve cryptography. In: Proceedings of Cryptographic hardware and embedded systems—CHES 2001, third international workshop, Paris, France, May 14-16, 2001. Generators, 2001. p. 377-90. doi:10.1007/ 3-540-44709-1_31. http://dx.doi.org/10.1007/3- 540-44709-1_31.
  • 73. Joye M. Smart-card implementation of elliptic curve cryptography and DPA-type attacks. In: Quisquater J-J, Paradinas P, Deswarte Y, Kalam A AE, editors. Smart card research and advanced applications VI, vol. 135. IFIP international federation for information processing. Kluwer Academic Publishers, Springer; 2004. p. 115-25.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >