Desktop version

Home arrow Computer Science arrow Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment

Source

Conclusions

DfT and security are often presented as antagonist, indeed the DfT has as objective to maximize internal nodes observability and controllability, while security constraints do not allow any internal information to be controlled or extracted. However, we showed that DfT can handle security constraints while being supported by commercial tools. We described secure scan test solution and secure RAM/ROM test techniques. Pro and cons of the insertion of such techniques in a design flow are also being discussed.

To conclude, DfT and Security could be compatible if carefully implemented.

References

  • 1. Abramovici M, Breuer MA, Firedman AD. Digital system testing and testable design, Revised Printing, IEEE Press; 1990. ISBN 0-7803-1062-4.
  • 2. Richard A. Wheelus TD, Haverkos KWJ, Integrated circuit memory using fusible links in a scan chain. U.S. Patent US5677917, issued April; 1996.
  • 3. Bardell PH, McAnney WH, Self-testing of multichip logic modules. In: Proceedings of international test conference; Nov. 1982. p. 200-04.
  • 4. Schubert A, Anheier W. On random pattern testability of cryptographic VLSI cores. J Elect Test Theory Appl. 2000;16(3):185-92.
  • 5. Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27(4):379-423.
  • 6. Shannon C. Communication theory of secrecy systems. Bell Syst Tech J. 1949;28(4):656-715.
  • 7. Feistel H. Cryptography and computer privacy. Sci Amer Mag. 1973;228:15-23.
  • 8. Di Natale G, Doulcier M, Flottes ML, Rouzeyre B. Self-test techniques for crypto-devices. In: IEEE transaction on VLSI systems, vol. 18, Issue 2. p. 1-5, Feb 2010. DOI:10.1109/TVLSI. 2008.2010045.
  • 9. Doulcier M, Flottes ML, Rouzeyre B. AES-based BIST: self- test, test pattern generation and signature analysis. In: Proceedins of 4th IEEE international symposium electron design, test applications (DELTA), 2008. p. 314-21.
  • 10. Joan D, Vincent R. The design of rinjael, AES—the advanced encryption standard. 2nd ed. New York: Springer.
  • 11. Recommendation for the Triple Data Encryption Algorithm (TDEA). Block Cipher, Special Publication 800-67, Gaithersburg, MD: National Institude Standards Technology (NIST); 2008.
  • 12. Karaklajic D, Knezevic M, Verbauwhede I. Low cost built in self test for public key crypto cores. In: Workshop on fault diagnosis and tolerance in cryptography (FDTC). Santa Barbara, CA. 2010. p. 97-103. doi: 10.1109/FDTC.2010.12.
  • 13. da Rolt J, Di Natale G, Flottes ML, Rouzeyre B. Thwarting scan-based attacks on secure-ICs with on-chip comparison. IEEE Trans Very Large Scale Int Syst. 2014;22(4):947-51. doi:10. 1109/TVLSI.2013.2257903.
  • 14. Sudeendra Kumar K, Lodha K, Sahoo SR, Mahapatra KK. On-chip comparison based secure output response compactor for scan-based attack resistance. In: 2015 international conference on VLSI systems, architecture, technology and applications (VLSI-SATA). Bangalore; 2015. p. 1-6. DOI:10.1109/VLSI-SATA.2015.7050467.
  • 15. Talatule SD, Zode P, Zode P. A secure architecture for the design for testability structures. In: 19th international symposium on VLSI design and test (VDAT). Ahmedabad. 2015:1-6. doi:10.1109/ISVDAT.2015.7208090.
  • 16. Wu Y, MacDonald P. Testing ASICs with multiple identical cores. IEEE Trans Comput Aided Des Int Circ Syst. 2003;22(3):327-36.
  • 17. Poehl F, Beck M, Arnold R, Rzeha J, Rabenalt T, Goessel M. On-chip evaluation, compensation and storage of scan diagnosis data. IET Comput Dig Tech. 2007;1(3):207-12.
  • 18. Paul S, Chakraborty R, Bhunia S. VIm-scan: alow overhead scan design approach for protection of secret key in scan-based secure chips. In: Proceedings of 25th IEEE VLSI test symposium, May 2007. p. 455-60.
  • 19. Lee J, Tebranipoor M, Plusquellic J. A low-cost solution for protecting IPs against scan-based side-channel attacks. In: Proceedings of 24th IEEE VLSI test symposium, May 2006, p. 1-6.
  • 20. Novak F, Biasizzo A. Security extension for IEEE Std 1149.1. J Elect Test. 2006;22(3):301-3.
  • 21. Chiu G-M, Li JC-M. A secure test wrapper design against internal and boundary scan attacks for embedded cores. IEEE Trans Very Large Scale Integr Syst. 2012;20(1):126-34.
  • 22. Wang X, Zheng Y, Basak A, Bhunia S. IIPS: infrastructure IP for secure SoC design. IEEE Trans on Comput. 2015;64(8):2226-38. doi:10.1109/TC.2014.2360535.
  • 23. Dworak J, Conroy Z, Crouch A, Potter J. Board security enhancement using new locking SIB- based architectures. In: IEEE international test conference (ITC), WA: Seattle; 2014. p. 1-10. doi:10.1109/TEST.2014.7035355.
  • 24. Da Rolt J, Di Natale G, Flottes ML, Rouzeyre B. A smart test controller for scan chains in secure circuits. In: Proceedinigs IEEE 19th IOLTS, July 2013. p. 228-9.
  • 25. Yang B, Wu K, Karri R, Secure scan: a design-for-test architecture for crypto chips. IEEE Trans Comput Aided Des Integr Circ Syst. 2006;25(10):2287-93.
  • 26. Hely D, Flottes ML, Bancel F, Rouzeyre B, Berard N, Renovell M. Scan design and secure chip [secure IC testing]. In: Proceedings of 10th IEEE IOLTS, July 2004. p. 219-24.
  • 27. Lee J, Tehranipoor M, Patel C, Plusquellic J. Securing scan design using lock and key technique. In: Proceedings of 20th IEEE international symposium DFT VLSI system, Oct. 2005. p. 51-62.
  • 28. Fujiwara H, Fujiwara K. Strongly secure scan design using generalized feed forward shift registers. IEICE Trans Inf Syst. 2015;E98-D(10):1852-55.
  • 29. Atobe Y, Shi Y, Yanagisawa M, Togawa N. Dynamically changeable secure scan architecture against scan-based side channel attack. In: International SoC design conference (ISOCC). Jeju Island; 2012. p. 155-8. doi:10.1109/ISOCC.2012.6407063.
  • 30. Ali SS, Saeed SM, Sinanoglu O, Karri R. Novel test-mode-only scan attack and countermeasure for compression-based scan architectures. In: IEEE transactions on computer-aided design of integrated circuits and systems. 2015;34(5):808-21. doi:10.1109/TCAD.2015.2398423.
  • 31. Saeed SM, Ali SS, Sinanoglu O, Karri R. Test-mode-only scan attack and countermeasure for contemporary scan architectures. In: IEEE international test conference (ITC), Seattle, WA; 2014. p. 1-8. doi:10.1109/TEST.2014.7035357.
  • 32. Hely D, Bancel F, Flottes ML, Rouzeyre B: Secure scan techniques: a comparison. In: Proceedings 12th IEEE ISOLT, Jan. 2006. p. 119-24.
  • 33. http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
  • 34. http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/
  • 35. https://www.mentor.com/products/silicon-yield/products/scan
  • 36. http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/ TetraMAXATPG.aspx
  • 37. https://www.mentor.com/products/silicon-yield/products/testkompress/
  • 38. http://www.cadence.com/products/di/edi_system/pages/default.aspx
  • 39. Yang B, Wu K, Karri R. Scan based side channel attack on dedicated hardware implementations of Data Encryption Standard. In: International test conference, 2004. p. 339-44.
  • 40. Nara R et al. RScan-based attack against elliptic curve cryptosystems. In: ASP-DAC, 2010. p. 407-12.
  • 41. Darolt J, Di Natale G, Flottes ML, Rouzeyre B. Are advanced DfT structures sufficient for preventing scan-attacks?. In: VLSI test symposium, 2012. p. 246-51
  • 42. Hely D, Bancel F, Flottes M-L, Rouzeyre B. Securing scan control in crypto chips. JETTA. 2007;23(5):457-64.
  • 43. Pugliesi-Conti PH. Circuit for securing scan chain data, patent filed, March 25, 2011, Publication number: 20120246528.
  • 44. van de Goor AJ. Testing semiconductor memories: theory and practice. John Wiley and Sons, 1991.
  • 45. Zarrineh K, Upadhyaya SJ, Chakravarty S. A new framework for generating optimal march tests for memory arrays. In: IEEE international test conference, 1998. p. 73-82.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >