Desktop version

Home arrow Computer Science arrow Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment

Source

Conclusion

In this chapter, we showed that ROs frequencies are tight coupled not only with design parameters, but also with other working conditions. In particular, we illustrated the role played by the on-chip logic which surrounds ROs and how the choice of the number of stages modifies ROs average frequencies and the dispersion of measured values around them. As for the working condition, we have posed our attention on the temperature, surrounding logic, and aging effects on the measured frequencies. Such analyses are extremely useful to design robust RO-based PUF, as we provide an extensive knowledge about the behavior of on-chip frequencies with static and dynamic parameters.

References

  • 1. Amouri A, Bruguier F, Kiamehr S, Benoit P, Torres L, Tahoori M. Aging effects in fpgas: an experimental analysis. In: 2014 24th international conference on Field Programmable Logic and Applications (FPL); 2014. p. 1-4.
  • 2. Anderson JH. A puf design for secure FPGA-based embedded systems. In: Proceedings of the 2010 Asia and South Pacific design automation conference. IEEE Press; 2010. p. 1-6.
  • 3. Barbareschi M, Bagnasco P, Mazzeo A. Supply voltage variation impact on Anderson PUF quality. In: 2015 10th international conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE; 2015. p. 1-6.
  • 4. Barbareschi M, Battista E, Mazzeo A, Mazzocca N. Testing 90 nm microcontroller SRAM PUF quality. In: 2015 10th international conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE; 2015. p. 1-6.
  • 5. Gassend B, Clarke D, Van Dijk M, Devadas S. Silicon physical random functions. In: Proceedings of the 9th ACM conference on computer and communications security. ACM; 2002. p. 148-60.
  • 6. Holcomb DE, Burleson WP, Fu K. Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans Comput. 2009;58(9):1198-210.
  • 7. Kumar SS, Guajardo J, Maes R, Schrijen G-J, Tuyls P. The butterfly PUF protecting IP on every FPGA. In: IEEE international workshop on hardware-oriented security and trust, 2008. HOST 2008. IEEE; 2008. p. 67-70.
  • 8. Lim D, Lee JW, Gassend B, Suh GE, Van Dijk M, Devadas S. Extracting secret keys from integrated circuits. IEEE Trans Very Large Scale Integr VLSI Syst. 2005;13(10):1200-5.
  • 9. Lorenz D, Georgakos G, Schlichtmann U. Aging analysis of circuit timing considering NBTI and HCI. In: 15th IEEE international on-line testing symposium, 2009. IOLTS 2009. IEEE;
  • 2009. p. 3-8.
  • 10. Maes R, Verbauwhede I. Physically unclonable functions: a study on the state of the art and future research directions. In: Towards hardware-intrinsic security. Springer; 2010. p. 3-37.
  • 11. Maiti A, Casarona J, McHale L, Schaumont P. A large scale characterization of RO-PUF. In: 2010 IEEE international symposium on Hardware-Oriented Security and Trust (HOST). IEEE;
  • 2010. p. 94-9.
  • 12. Maiti A, Schaumont P. Improving the quality of a physical unclonable function using configurable ring oscillators. In: International conference on field programmable logic and applications, 2009. FPL 2009. IEEE; 2009. p. 703-7.
  • 13. Maiti A, Schaumont P. Improved ring oscillator PUF: an FPGA-friendly secure primitive. J Cryptol. 2011;24(2):375-97.
  • 14. Merli D, Stumpf F, Eckert C. Improving the quality of ring oscillator PUFs on FPGAs. In: Proceedings of the 5th workshop on embedded systems security. ACM; 2010. p. 9.
  • 15. Qu G, Yin C-E. Temperature-aware cooperative ring oscillator PUF. In: IEEE international workshop on hardware-oriented security and trust, 2009. HOST’09. IEEE; 2009. p. 36-42.
  • 16. Skorobogatov S, Woods C. Breakthrough silicon scanning discovers backdoor in military chip. Springer; 2012.
  • 17. Suh GE, Devadas S. Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th annual design automation conference. ACM; 2007. p. 9-14.
  • 18. van der Leest V, Schrijen G-J, Handschuh H, Tuyls P. Hardware intrinsic security from D flip-flops. In: Proceedings of the fifth ACM workshop on scalable trusted computing. ACM; 2010. p. 53-62.
  • 19. Vatajelu EI, Di Natale G, Barbareschi M, Torres L, Indaco M, Prinetto P. Spin-transfer torque magnetic random access memory (STT-MRAM). ACM J Emer Technol Comput Syst JETC. 2015.
  • 20. Xilinx. Spartan-6 family overview. Available at http://www.xilinx.com/support/ documentation/data_sheets/ds160.pdf.
  • 21. Xilinx. Spartan-6 FPGA configurable logic block. Available at http://www.xilinx.com/support/ documentation/user_guides/ug384.pdf.
  • 22. Xilinx. Spartan-6 FPGA data sheet: DC and switching characteristics. Available at http://www. xilinx.com/support/documentation/data_sheets/ds162.pdf.
  • 23. Xin X, Kaps J-P, Gaj K. A configurable ring-oscillator-based PUF for xilinx FPGAs. In: 2011 14th euromicro conference on Digital System Design (DSD). IEEE; 2011. p. 651-7.
  • 24. Yin C-ED, Qu G. LISA: maximizing RO PUF’s secret extraction. In: 2010 IEEE international symposium on Hardware-Oriented Security and Trust (HOST). IEEE; 2010. p. 100-5.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS