Desktop version

Home arrow Health

References

  • 1. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38-59
  • 2. Cootes TF, Taylor CJ (1993) Active shape model search using local grey-level models: a quantitative evaluation. In: BMVC, Surrey, vol 93, pp 639-648. Citeseer
  • 3. Pizer SM, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR et al (2003) Deformable m-reps for 3d medical image segmentation. Int J Comput Vis 55(2-3):85-106
  • 4. Styner M, Oguz I, Xu S, Brechbuhler C, Pantazis D, Levitt JJ, Shenton ME, Gerig G (2006) Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J (1071):242
  • 5. Wu FTH, Ng-Thow-Hing V, Singh K, Agur AM, McKee NH (2007) Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models. Comput Methods Programs Biomed 88(2):112-122
  • 6. Chen SY, Guan Q (2011) Parametric shape representation by a deformable Nonuniform Rational Basis Spline model for cardiac functional measurements. IEEE Trans Biomed Eng 58(3):480-487
  • 7. Yushkevich P, Fletcher PT, Joshi S, Thall A, Pizer SM (2003) Continuous medial representations for geometric object modeling in 2D and 3D. Image Vis Comput 21(1): 17-27
  • 8. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239-256
  • 9. Rangarajan A, Chui H, Bookstein FL (1997) The softassign procrustes matching algorithm. In: Information processing in medical imaging. Springer, Berlin/New York, pp 29-42
  • 10. Subsol G, Thirion J-P, Ayache N (1998) A scheme for automatically building threedimensional morphometric anatomical atlases: application to a skull atlas. Med Image Anal 2(1):37-60
  • 11. Fleute M, Lavallee S, Julliard R (1999) Incorporating a statistically based shape model into a system for computer-assisted anterior cruciate ligament surgery. Med Image Anal 3(3):209- 222
  • 12. Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245-254
  • 13. Shang Y, Dossel O (2004) Statistical 3D shape-model guided segmentation of cardiac images. In: Computers in Cardiology, Cambridge. IEEE, pp 553-556
  • 14. Shen D, Herskovits EH, Davatzikos C (2001) An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. IEEE Trans Med Imaging 20(4):257-270
  • 15. Zhao F, Zhang H, Wahle A, Thomas MT, Stolpen AH, Scholz TD, Sonka M (2009) Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med Image Anal 13(3):483-493
  • 16. Fleute M, Lavallee S, Desbat L (2002) Integrated approach for matching statistical shape models with intra-operative 2D and 3D data. In: Medical image computing and computer- assisted intervention-MICCAI 2002, Tokyo, vol 2489. Springer, pp 364-372
  • 17. Dam EB, Fletcher PT, Pizer SM (2008) Automatic shape model building based on principal geodesic analysis bootstrapping. Med Image Anal 12(2): 136-151
  • 18. Frangi AF, Niessen WJ, Rueckert D, Schnabel JA (2001) Automatic 3D ASM construction via atlas-based landmarking and volumetric elastic registration. In: Information processing in medical imaging, Davis. Springer, pp 78-91
  • 19. Rueckert D, Frangi AF, Schnabel JA (2003) Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans Med Imaging 22(8):1014-1025
  • 20. Kelemen A, Szekely G, Gerig G (1999) Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans Med Imaging 18(10):828-839
  • 21. Brett AD, Taylor CJ (2000) Construction of 3D shape models of femoral articular cartilage using harmonic maps. In: Medical image computing and computer-assisted intervention- MICCAI 2000, Pittsburgh. Springer, pp 1205-1214
  • 22. Thompson PM, Toga AW (1997) Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Med Image Anal 1(4):271-294
  • 23. Lamecker H, Lange T, Seebass M (2004) Segmentation of the liver using a 3D statistical shape model. Konrad-Zuse-Zentrum ffir Informationstechnik, pp 1-25
  • 24. Praun E, Sweldens W, Schroder P (2001) Consistent mesh parameterizations. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, Los Angeles. ACM, pp 179-184
  • 25. Meier v, Fisher E (2002) Parameter space warping: shape-based correspondence between morphologically different objects. IEEE Trans Med Imaging 21(1):31—47
  • 26. Wang Y, Chiang M-C, Thompson PM (2005) Automated surface matching using mutual information applied to Riemann surface structures. In: Medical image computing and computer-assisted intervention-MICCAI 2005, Palm Springs, vol 3750. Springer, pp 666674
  • 27. Kotcheff ACW, Taylor CJ (1998) Automatic construction of eigenshape models by direct optimization. Med Image Anal 2(4):303-314
  • 28. Davies RH (2002) Learning shape: optimal models for analysing shape variability. Ph.D. thesis, University of Manchester
  • 29. Thodberg HH (2003) Minimum description length shape and appearance models. In: Information processing in medical imaging, Ambleside. Springer, pp 51-62
  • 30. Cootes TF, Taylor CJ (1994) Using grey-level models to improve active shape model search. In: Proceedings of the 12th IAPR international conference on pattern recognition, Jerusalem. Vol. 1-conference A: computer vision & image processing, vol 1. IEEE, pp 63-67
  • 31. Ando S (2000) Consistent gradient operators. IEEE Trans Pattern Anal Mach Intell 22(3):252-265
  • 32. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432-441
  • 33. Bishop CM et al (2006) Pattern recognition and machine learning, vol 4. Springer, New York
  • 34. Duda RO, Hart PE, Stork DG (2012) Pattern classification. John Wiley & Sons, New York
  • 35. Fukunaga K (2013) Introduction to statistical pattern recognition. Academic press, Boston
  • 36. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W.H. Freeman and Company, San Francisco
  • 37. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81-106
  • 38. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth Brooks, Monterey
  • 39. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge university press, Cambridge
  • 40. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge university press, Cambridge
  • 41. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386
  • 42. Minsky M, Papert S (1969) Perceptrons. MIT Press, Cambridge, MA
  • 43. Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1(2):119-130
  • 44. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541-551
  • 45. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating correlations. Nature 333:533-536
  • 46. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Cogn Model 5:3
  • 47. Olshausen BA et al (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607-609
  • 48. Hinton G, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527-1554
  • 49. LeCun Y, Bengio Y (1998) Convolutional networks for images, speech, and time series. In: The handbook of brain theory and neural networks. MIT Press, Cambridge, pp 255-258
  • 50. Poggio T, Torre V (1984) Ill-posed problems and regularization analysis in early vision. Massachusetts Institute of Technology, Cambridge
  • 51. Poggio T, Torre V, Koch C (1989) Computational vision and regularization theory. Image Underst 3(1-18): 111
  • 52. Cootes TF, Taylor CJ (1992) Active shape models - ‘smart snakes’. In: BMVC92, Leeds. Springer, pp 266-275
  • 53. Marroquin J, Mitter S, Poggio T (1987) Probabilistic solution of ill-posed problems in computational vision. J Am Stat Assoc 82(397):76-89
  • 54. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721-741
  • 55. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond Ser B Biol Sci 207(1167):187-217
  • 56. Haralick RM (1984) Digital step edges from zero crossing of second directional derivatives. IEEE Trans Pattern Anal Mach Intell 6(1):58-68
  • 57. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679-698
  • 58. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge university press, Cambridge
  • 59. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591-1595
  • 60. Piegl LA (1993) Fundamental developments of computer-aided geometric modeling. Academic Press, London/San Diego
  • 61. Cootes TF, Hill A, Taylor CJ, Haslam J (1994) Use of active shape models for locating structures in medical images. Image Vis Comput 12(6):355-365
  • 62. Bohm W, Farin G, Kahmann J (1984) A survey of curve and surface methods in CAGD. Comput Aided Geom Des 1(1): 1-60
  • 63. Delingette H, Hebert M, Ikeuchi K (1992) Shape representation and image segmentation using deformable surfaces. Image Vis Comput 10(3):132-144
  • 64. Piegl L (1991) On Nonuniform Rational Basis Spline: a survey. IEEE Comput Graph Appl 11(1):55-71
  • 65. Zhang S, Zhan Y, Dewan M, Huang J, Metaxas DN, Zhou XS (2011) Deformable segmentation via sparse shape representation. In: Medical image computing and computer-assisted intervention-MICCAI 2011, Athens. Springer, pp 451-458
  • 66. Hontani H, Watanabe W (2010) Point-based non-rigid surface registration with accuracy estimation. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), San Francisco. IEEE, pp 446-452
  • 67. Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple- object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Med Imaging 21(9): 1151-1166
  • 68. Tobon-Gomez C, Butakoff C, Aguade S, Sukno F, Moragas G, Frangi AF (2008) Automatic construction of 3d-ASM intensity models by simulating image acquisition: application to myocardial gated SPECT studies. IEEE Trans Med Imaging 27(11):1655-1667
  • 69. Heimann T, Meinzer H-P (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543-563
  • 70. Hanaoka S, Masutani Y, Nemoto M, Nomura Y, Yoshikawa T, Hayashi N, Yoshioka N, Ohtomo K (2011) Probabilistic modeling of landmark distances and structure for anomaly-proof landmark detection. In: Proceedings of the third international workshop on mathematical foundations of computational anatomy-geometrical and statistical methods for modelling biological shape variability, Toronto, pp 159-169
  • 71. Lowe DG (1999) Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, Kerkyra, vol 2. IEEE, pp 1150-1157
  • 72. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91-110
  • 73. Lindeberg T (1993) Scale-space theory in computer vision. Springer, Berlin/New York
  • 74. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005, San Diego, vol 1. IEEE, pp 886-893
  • 75. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Computer vision-ECCV 2006, Graz. Springer, pp 404-417
  • 76. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, Bombay. IEEE, pp 839-846
  • 77. Gerig G, Kubler O, Kikinis R, Jolesz FA (1992) Nonlinear anisotropic filtering of MRI data. IEEE Trans Med Imaging 11(2):221-232
  • 78. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143-168
  • 79. Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math LVI(4):617-694
  • 80. Miller MI, Trouve A, Younes L (2002) On the metrics and Euler-Lagrange equations of computational anatomy. Ann Rev Biomed Eng 4:375-405
  • 81. Trouve A (1998) Diffeomorphisms groups and pattern matching in image analysis. Int J Comput Vis 28(3):213-221
  • 82. Miller MI, Trouve A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Imaging Vis 24(2):209-228
  • 83. Younes L (2010) Shapes and diffeomorphisms. Applied mathematical science, vol 171. Springer, Heidelberg
  • 84. Pennec X, Arsigny V (2013) Exponential barycenters of the canonical Cartan connection and invariant means on lie groups. In: Matrix information geometry. Springer, Berlin/Heidelberg, pp 123-166
  • 85. Holm DD, Trouve A, Younes L (2009) The Euler-Poincare theory of metamorphosis. Q Appl Math 67:661-685
  • 86. Durrleman S (2010) Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Ph.D. thesis, Universite de Nice-Sophia Antipolis
  • 87. Beg MF, Miller MI, Trouve A, Younes L (2005) Computing large deformation metric mappings via geodesic flow of diffeomorphisms. Int J Comput Vis 61:139-157
  • 88. Trouve A, Younes L (2005) Metamorphoses through lie group action. Found Comput Math 5(2):173-198
  • 89. Holm DD, Schmah T, Stoica C (2009) Geometric mechanics and symmetry. Oxford University Press, New York
  • 90. Arsigny V, Commowick O, Pennec X, Ayache N (2006) A log-Euclidean framework for statistics on diffeomorphisms. In: MICCAI, Copenhagen, vol 9, pp 924-931
  • 91. Vercauteren T, Pennec X, Perchant A, Ayache N (2008) Symmetric log-domain diffeomorphic registration: a demons-based approach. Lect Notes Comput Sci 5241:754-761
  • 92. Mansi T, Pennec X, Sermesant M, Delingette H, Ayache N (2010) Logdemons revisited: consistent regularisation and incompressibility constraint for soft tissue tracking in medical images. In: MICCAI, Beijing, vol 13, pp 652-659
  • 93. Lorenzi M, Pennec X (2012) Geodesics, parallel transport and one-parameter subgroups for diffeomorphic image registration. Int J Comput Vis 12:1-17
  • 94. Bruveris M, Holm DD (2015) Geometry of image registration: the diffeomorphism group and momentum maps. In: Geometry, mechanics, and dynamics. Springer, New York, pp 19-56
  • 95. Holm DD, Bruveris M, Gay-Balmaz F, Ratiu TS (2011) The momentum map representation of images. J Nonlinear Sci 21(1):115-150
  • 96. Younes L, Arrate F, Miller MI (2009) Evolutions equations in computational anatomy. Neuroimage 45(1, Supplement 1):S40-S50
  • 97. Vialard FX, Risser L, Rueckert D, Cotter CJ (2012) Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput Vis 97:229-241
  • 98. do Carmo M (1992) Reimannian geometry. Birkhauser, Boston/Basel/Berlin
  • 99. Harms P (2010) Sobolev metrics on shape space of surfaces. Ph.D. thesis, University of Wien
  • 100. Khesin BA, Wendt R (2009) The geometry of infinite dimensional Lie groups. Volume 51 of Ergebnisse der mathematic und ihrer Grenzgebiete. 3. Folge/a series of modern surveys in mathematics. Springer, Berlin/London
  • 101. Hernandez M, Bossa M, Olmos S (2009) Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector flows. Int J Comput Vis 85:291-306
  • 102. Mansi T, Voigt I, Leonardi B, Pennec X, Durrleman S, Sermesant M, Delingette H, Taylor A, Boudjemline Y, Pongiglione G, Ayache N (2011) A statistical model for quantification and prediction of cardiac remodelling: application to tetralogy of fallot. IEEE Trans Med Images 30(9):1605-1616
  • 103. Postnikov MM (2001) Geometry VI: Riemannian geometry. Encyclopedia of mathematical science. Springer, Berlin/London
  • 104. Vaillant M, Miller MI, Trouve A, Younes L (2004) Statistics on diffeomorphisms via tangent space representations. NeuroImage 23(S1):S161-S169
  • 105. Vialard FX, Risser L, Holm DD, Rueckert D (2011) Diffeomorphic atlas estimation using Karcher mean and geodesic shooting on volumetric images. In: Medical image understanding and analysis. IEEE, Piscataway
  • 106. Fletcher PT, Lu C, Pizer M, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995-1005
  • 107. Arsigny V (2006) Processing data in lie groups: an algebraic approach. Ph.D. thesis, Ecole politechnique, Palaiseau
  • 108. Younes L, Qiu A, Winslow R, Miller M (2008) Transport of relational structures in groups of diffeomorphisms. J Math Imaging Vis 32(1):41-56
  • 109. Khan A, Beg M (2008) Representation of time-varying shapes in the large deformation diffeomorphic framework. In: 5th IEEE international symposium on biomedical imaging ISBI, Paris, pp 1521-1524
  • 110. Trouve A, Vialard FX (2012) Shape splines and stochastic shape evolutions: a second order point of view. Quart Appl Math 70:219-251
  • 111. Younes L (2007) Jacobi fields in groups of diffeomorphisms and applications. Q Appl Math 65:113-134
  • 112. Durrleman S, Pennec X, Trouve A, Braga J, Gerig G, Ayache N (2012) Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. IJCV 103(1):22-59
  • 113. Singh N, Fletcher PT, Preston JS, Ha L, King R, Marron JS, Wiener M, Joshi S (2010) Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. In: MICCAI, Beijing, pp 529-537
  • 114. Bossa M, Hernandez M, Olmos S (2007) Contributions to 3d diffeomorphic atlas estimation: application to brain images. In: MICCAI, Brisbane, vol 10, pp 667-674
  • 115. Durrleman S, Fillard P, Pennec X, Trouve A, Ayache N (2011) Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage 55(3):1073-1090
  • 116. Vialard FX, Risser L, Rueckert D, Holm DD (2012) Diffeomorphic atlas estimation using geodesic shooting on volumetric images. Ann BMVA 5:1-12
  • 117. Durrleman S, Pennec X, Trouve A, Gerig G, Ayache N (2009) Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: MICCAI, London, vol 12, pp 297-304
  • 118. Durrleman S, Pennec X, Trouve A, Ayache N, Braga J (2012) Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J Hum Evol 62(1):74-88
  • 119. Gu M, Nielsen MA, Dowling MR, Doherty AC (2006) Quantum computation as geometry. Science 24(311(5764)):1133-1135
  • 120. Antoine Maintz JB, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1-36
  • 121. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development the international consortium for brain mapping (ICBM). Neuroimage 2(2PA):89-101
  • 122. Thompson PM, Schwartz C, Toga AW (1996) High-resolution random mesh algorithms for creating a probabilistic 3D surface atlas of the human brain. Neuroimage 3(1):19-34
  • 123. Thompson PM, Woods RP, Mega MS, Toga AW (2000) Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum Brain Mapp 9(2):81-92
  • 124. Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D (2007) Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int J Comput Assist Radiol Surg 2(3-4):135-142
  • 125. Yang J, Staib LH, Duncan JS (2004) Neighbor-constrained segmentation with level set based 3-D deformable models. IEEE Trans Med Imaging 23(8):940-948
  • 126. Tsai A, Yezzi A Jr, Wells W, Tempany C, Tucker D, Fan A, Grimson WE, Willsky A (2003) A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22(2):137-154
  • 127. Furukawa D, Shimizu A, Kobatake H (2007) Automatic liver segmentation method based on maximum a posterior probability estimation and level set method. In: 3D segmentation in the clinic: a grand challenge. CSIRO, Collingwood, pp 117-124
  • 128. Pohl KM, Fisher J, Bouix S, Shenton M, McCarley RW, Grimson WEL, Kikinis R, Wells WM (2007) Using the logarithm of odds to define a vector space on probabilistic atlases. Med Image Anal 11(5):465-477
  • 129. Tsagaan B, Shimizu A, Kobatake H, Miyakawa K (2002) An automated segmentation method of kidney using statistical information. In: Medical image computing and computer-assisted intervention-MICCAI 2002, Tokyo, vol 2488. Springer, pp 556-563
  • 130. Lorenz C, Krahnstover N (2000) Generation of point-based 3D statistical shape models for anatomical objects. Comput Vis Image Underst 77(2):175-191
  • 131. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT, Cambridge
  • 132. Sawada Y, Hontani H (2012) A study on graphical model structure for representing statistical shape model of point distribution model. In: Medical image computing and computer-assisted intervention-MICCAI 2012, Nice. Springer, pp 470-477
  • 133. Hontani H, Tsunekawa Y, Sawada Y (2013) Accurate and robust registration of nonrigid surface using hierarchical statistical shape model. In: IEEE conference on computer vision and pattern recognition (CVPR), Portland. IEEE, pp 2977-2984
  • 134. Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D (2013) A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans Med Imaging 32(7):1302-1315
  • 135. Cabezas M, Oliver A, Llado X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 104(3):e158-e177
  • 136. Zhang D, Wu G, Jia H, Shen D (2011) Confidence-guided sequential label fusion for multiatlas based segmentation. In: Medical image computing and computer-assisted intervention- MICCAI 2011, Toronto. Springer, pp 643-650
  • 137. Isgum I, Staring M, Rutten A, Prokop M, Viergever MA, van Ginneken B (2009) Multi-atlas- based segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging 28(7):1000-1010
  • 138. Artaechevarria X, Munoz-Barrutia A, Ortiz-de Solorzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28(8):1266-1277
  • 139. Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3):726-738
  • 140. Lotjonen JMP, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, Rueckert D (2010) Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage 49(3):2352-2365
  • 141. van Rikxoort EM, Isgum I, Arzhaeva Y, Staring M, Klein S, Viergever MA, Pluim JPW, van Ginneken B (2010) Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Med Image Anal 14(1):39—49
  • 142. Dawant BM, Zijdenbos AP (2000) Image segmentation. Handb Med Imaging 2:71-127
  • 143. Chenyang Xu, Pham DL, Prince JL (2000) Image segmentation using deformable models. Handb Med Imaging 2:129-174
  • 144. Bankman IN (2009) Segmentation. Academic Press, Cambridge
  • 145. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Ann Rev BiomedEng 2(1):315-337
  • 146. Fischler MA, Elschlager RA (1973) The representation and matching of pictorial structures. IEEE Trans Comput 22(1):67-92
  • 147. Widrow B (1973) The rubber-mask technique. Pattern Recognit 5(3):175-211
  • 148. Chien YP, Fu K-S (1974) Recognition of X-ray picture patterns. IEEE Trans Syst Man Cybern SMC-4(2):145-156
  • 149. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321-331
  • 150. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681-685
  • 151. Park H, Bland PH, Meyer CR (2003) Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans Med Imaging 22(4):483-492
  • 152. Shimizu A, Kubo M, Furukawa D, Kobatake H, Nawano S (2008) Abdomen standardization for multi-organ segmentation of CT volumes. Int J Comput Assist Radiol Surg 3:s195-s196
  • 153. Linguraru MG, Pura JA, Pamulapati V, Summers RM (2012) Statistical 4D graphs for multiorgan abdominal segmentation from multiphase CT. Med Image Anal 16(4):904-914
  • 154. Shimizu A, Kimoto T, Kobatake H, Nawano S, Shinozaki K (2010) Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J Comput Assist Radiol Surg 5(1):85-98
  • 155. Wolz R, Chengwen C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9): 1723-1730
  • 156. Umetsu S, Shimizu A, Watanabe H, Kobatake H, Nawano S (2014) An automated segmentation algorithm for CT volumes of livers with a typical shapes and large pathological lesions. IEICE Trans Inf Syst 97(4):951-963
  • 157. Leventon ME, Grimson WEL, Faugeras O (2000) Statistical shape influence in geodesic active contours. In: Proceedings of IEEE conference on computer vision and pattern recognition, Hilton Head, vol 1. IEEE, pp 316-323
  • 158. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61- 79
  • 159. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266-277
  • 160. Greig DM, Porteous BT, Seheult AH (1989) Exact maximum a posteriori estimation for binary images. J R Stat Soc Ser B (Methodol) 51:271-279
  • 161. Boykov Y, Veksler O, Zabih R (1998) Markov random fields with efficient approximations. In: Proceedings of 1998 IEEE computer society conference on computer vision and pattern recognition, Santa Barbara. IEEE, pp 648-655
  • 162. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222-1239
  • 163. Lempitsky V, Rother C, Roth S, Blake A (2010) Fusion moves for Markov random field optimization. IEEE Trans Pattern Anal Mach Intell 32(8):1392-1405
  • 164. Ishikawa H (2009) Higher-order gradient descent by fusion-move graph cut. In: IEEE 12th international conference on computer vision, Kyoto. IEEE, pp 568-574
  • 165. Funka-Lea G, Boykov Y, Florin C, Jolly M-P, Moreau-Gobard R, Ramaraj R, Rinck D (2006) Automatic heart isolation for CT coronary visualization using graph-cuts. In: 3rd IEEE international symposium on biomedical imaging: Nano to Macro, Prague. IEEE, pp 614-617
  • 166. Slabaugh G, Unal G (2005) Graph cuts segmentation using an elliptical shape prior. In: IEEE international conference on image processing, ICIP 2005, Genoa, vol 2. IEEE, pp II-1222
  • 167. Dasc P, Vekslera O, Zavadskyb V, Boykova Y (2008) Semiautomatic segmentation with compact shape prior. Image Vis Comput 27(1-2):206-219
  • 168. Freedman D, Zhang T (2005) Interactive graph cut based segmentation with shape priors. In: IEEE computer society conference on computer vision and pattern recognition, CVPR 2005, San Diego, vol 1. IEEE, pp 755-762
  • 169. Shimizu A, Nakagomi K, Narihira T, Kobatake H, Nawano S, Shinozaki K, Ishizu K, Togashi K (2011) Automated segmentation of 3D CT images based on statistical atlas and graph cuts. In: Medical computer vision. Recognition techniques and applications in medical imaging, Nagoya. Springer, pp 214-223
  • 170. Malcolm J, Rathi Y, Tannenbaum A (2007) Graph cut segmentation with nonlinear shape priors. In: IEEE international conference on image processing, ICIP 2007, San Antonio, vol 4. IEEE, pp IV-365
  • 171. Nakagomi K, Shimizu A, Kobatake H, Yakami M, Fujimoto K, Togashi K (2013) Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume. Med Image Anal 17(1):62-77
  • 172. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119-139
  • 173. Breiman L (2001) Random forests. Mach Learn 45(1):5-32
  • 174. Nishii R, Eguchi S (2005) Supervised image classification by contextual AdaBoost based on posteriors in neighborhoods. IEEE Trans Geosci Remote Sens 43(11):2547-2554
  • 175. Avidan S (2006) SpatialBoost: adding spatial reasoning to AdaBoost. In: Computer vision- ECCV 2006, Graz. Springer, pp 386-396
  • 176. Morra JH, Tu Z, Apostolova LG, Green AE, Toga AW, Thompson PM (2008) Automatic subcortical segmentation using a contextual model. In: Medical image computing and computer-assisted intervention-MICCAI 2008, New York. Springer, pp 194-201
  • 177. Amores J, Sebe N, Radeva P, Gevers T, Smeulders A (2004) Boosting contextual information in content-based image retrieval. In: Proceedings of the 6th ACM SIGMM international workshop on multimedia information retrieval, New York. ACM, pp 31-38
  • 178. Shimizu A, Kobayashi M, Nakagomi K, Kobatake H, Yakami M, Fujimoto K, Togashi K (2012) Interlobar fissure extraction from a chest CT volume based on a new loss function for a boosting algorithm. Int J Comput Assist Radiol Surg 7(supplement 1):s322-s324
  • 179. Shimizu A, Shindo K, Kobatake H, Nawano S, Shinozaki K (2013) Proposal of a novel boosting algorithm regularized by a statistical shape feature and its application to organ segmentation. Med Imaging Technol 31(2): 121-131
  • 180. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis 72(2):195-215
  • 181. Saito A, Nakada M, Oost E, Shimizu A, Watanabe H, Nawano S (2013) A statistical shape model for multiple organs based on synthesized-based learning. In: Abdominal imaging. Computation and clinical applications. Springer, Berlin/Heidelberg, pp 280-289
  • 182. Malcolm J, Rathi Y, Shenton ME, Tannenbaum A (2008) Label space: a coupled multi-shape representation. In: Medical image computing and computer-assisted intervention-MICCAI 2008, New York. Springer, pp 416-424
  • 183. Changizi N, Hamarneh G (2010) Probabilistic multi-shape representation using an isometric log-ratio mapping. In: Medical image computing and computer-assisted intervention- MICCAI 2010, Beijing. Springer, pp 563-570
  • 184. de Bruijne M, Lund MT, Tanko LB, Pettersen PC, Nielsen M (2007) Quantitative vertebral morphometry using neighbor-conditional shape models. Med Image Anal 11(5):503-512
  • 185. Baka N, de Bruijne M, Reiber JHC, Niessen W, Lelieveldt BPF (2010) Confidence of model based shape reconstruction from sparse data. In: IEEE international symposium on biomedical imaging: from Nano to Macro, Rotterdam. IEEE, pp 1077-1080
  • 186. Blanc R, Seiler C, Szekely G, Nolte L-P, Reyes M (2012) Statistical model based shape prediction from a combination of direct observations and various surrogates: application to orthopaedic research. Med Image Anal 16(6): 1156-1166
  • 187. Syrkina E, Blanc R, Szekely G (2011) Propagating uncertainties in statistical model based shape prediction. In: SPIE medical imaging, vol 7962. International Society for Optics and Photonics, Bellingham
  • 188. Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y (2013) Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors. In: Medical image computing and computer-assisted intervention-MICCAI 2013, Nagoya. Springer, pp 275-282
  • 189. Rao A, Aljabar P, Rueckert D (2008) Hierarchical statistical shape analysis and prediction of sub-cortical brain structures. Med Image Anal 12(1):55-68
  • 190. Tomoshige S, Oost E, Shimizu A, Watanabe H, Nawano S (2014) A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images. Med Image Anal 18(1): 130-143
  • 191. De Filippo M, Calabrese M, Quinto S, Rastelli A, Bertellini A, Martora R, Sverzellati N, Corradi D, Vitale M, Crialesi G, Sarli L, Roncoroni L, Garlaschi G, Zompatori M (2008) Congenital anomalies and variations of the bile and pancreatic ducts: magnetic resonance cholangiopancreatography findings, epidemiology and clinical significance. La Radiol Medica 113(6):841-859
  • 192. Yu J, Turner MA, Fulcher AS, Halvorsen RA (2006) Congenital anomalies and normal variants of the pancreaticobiliary tract and the pancreas in adults: part 1, biliary tract. Am J Roentgenol 187(6):1536-1543
  • 193. Guebert GM, Yochum TR, Rowe LJ (1987) Congenital anomalies and normal skeletal variants. In: Essentials of skeletal radiology. Williams & Wilkins, Baltimore
  • 194. Carrino JA, Campbell PD Jr, Lin DC, Morrison WB, Schweitzer ME, Flanders AE, Eng J, Vaccaro AR (2011) Effect of spinal segment variants on numbering vertebral levels at lumbar MR imaging. Radiology 259(1):196-202
  • 195. Chao C-T (2013) Ureteropelvic duplication as focus of recurrent infection. QJM 106(5):471- 472
  • 196. Rammohan A, Palaniappan R, Pitchaimuthu A, Rajendran K, Perumal SK, Balaraman K, Ramasamy R, Sathyanesan J, Govindan M (2014) Implications of the presence of an aberrant right hepatic artery in patients undergoing pancreaticoduodenectomy. World J Gastrointest Surg 6(1):9
  • 197. DiMagno MJ, Wamsteker E-J (2011) Pancreas divisum. Curr Gastroenterol Rep 13(2):150- 156
  • 198. Nopoulos P, Swayze V, Flaum M, Ehrhardt JC, Yuh WTC, Andreasen NC (1997) Cavum septi pellucidi in normals and patients with schizophrenia as detected by magnetic resonance imaging. Biol Psychiatry 41(11):1102-1108
  • 199. Mori K, Oda M, Egusa T, Jiang Z, Kitasaka T, Fujiwara M, Misawa K (2010) Automated nomenclature of upper abdominal arteries for displaying anatomical names on virtual laparoscopic images. In: Medical imaging and augmented reality. Springer, Berlin, pp 353362
  • 200. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1):115-126
 
Source
< Prev   CONTENTS   Source   Next >