Desktop version

Home arrow Computer Science arrow Designing Data-Intensive Applications. The Big Ideas Behind Reliable, Scalable and Maintainable Systems

A culture of verification

Systems like HDFS and S3 still have to assume that disks work correctly most of the time—which is a reasonable assumption, but not the same as assuming that they always work correctly. However, not many systems currently have this kind of “trust, but verify” approach of continually auditing themselves. Many assume that correctness guarantees are absolute and make no provision for the possibility of rare data corruption. I hope that in the future we will see more self-validating or self-auditing systems that continually check their own integrity, rather than relying on blind trust [68].

I fear that the culture of ACID databases has led us toward developing applications on the basis of blindly trusting technology (such as a transaction mechanism), and neglecting any sort of auditability in the process. Since the technology we trusted worked well enough most of the time, auditing mechanisms were not deemed worth the investment.

But then the database landscape changed: weaker consistency guarantees became the norm under the banner of NoSQL, and less mature storage technologies became widely used. Yet, because the audit mechanisms had not been developed, we continued building applications on the basis of blind trust, even though this approach had now become more dangerous. Let’s think for a moment about designing for auditability.

< Prev   CONTENTS   Source   Next >

Related topics