Desktop version

Home arrow Health arrow Analysis of Protein Post-Translational Modifications by Mass Spectrometry



  • 1 Hermann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin like proteins in protein regulation. Circ Res 2007;100:1276-1291.
  • 2 Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J 1998;17:5964-5973.
  • 3 Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 2005;309:127-130.
  • 4 Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol 2007;177:613-624.
  • 5 Hay RT. SUMO: a history of modification. Mol Cell 2005;18:1-12.
  • 6 Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both modification and motif and nuclear targeting. J Biol Chem 2001;276:12654-12659.
  • 7 Chung TL, Hsiao HH, Yeh YY, Shia HL, Chen YL, Liang PH, Wang AH, Khoo KH, Shoei-Lung Li S. In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides. J Biol Chem 2004;279:39653-39662.
  • 8 Eifler K, Vertegaal ACO. Mapping the SUMOylated landscape. FEBSJ 2015;282:3669-3680.
  • 9 Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006;6:369-381.
  • 10 Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett 2012;316:113-125.
  • 11 Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005;123:773-786.
  • 12 Hickey CM, Wilson NR, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 2012;13:755-766.
  • 13 Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009;78:363-397.
  • 14 Dou H, Huang C, Van-Nguyen T, Lu LS, Yeh ET. SUMOylation and de- SUMOylation in response to DNA damage. FEBS Lett 2011;585:2891-2896.
  • 15 Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 2011;18:520-528.
  • 16 Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012;13:508-523.
  • 17 Finley D. Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annu Rev Biochem 2009;78:477-513.
  • 18 Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 2005;435:979-982.
  • 19 Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008;10:538-546.
  • 20 Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 2009;10:659-671.
  • 21 Chen ZJJ, Sun LJJ. Nonproteolytic Functions of Ubiquitin in Cell Signaling. Mol Cell 2009;33:275-286.
  • 22 Muller S, Matunis MJ, Dejean A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 1998;17:61-70.
  • 23 Ross S, Best JL, Zon LI, Gill G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 2002;10:831-842.
  • 24 Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6- dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002;419:135-141.
  • 25 Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 2005;19:123-133.
  • 26 Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell 2007;129:665-679.
  • 27 Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 2007;28:730-738.
  • 28 Wu S-Y, Chiang C-M. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J 2009;28:1246-1259.
  • 29 Bologna S, Ferrari S. It takes two to tango: Ubiquitin and SUMO in the DNA damage response. Front Genet 2013;4:1-18.
  • 30 Chen Z, Lu W. Roles of Ubiquitination and SUMOylation on Prostate Cancer: Mechanisms and Clinical Implications. Int J Mol Sci 2015;16:4560-4580.
  • 31 Hochstrasser M. Origin and function of ubiquitin like proteins. Nature 2009;2009(458):422-429.
  • 32 Sarge KD, Park-Sarge OK. Sumoylation and human disease pathogenesis. Trends Biochem Sci 2009;34:200-205.
  • 33 Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal AC. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 2008;7:132-144.
  • 34 Jeram SM, Srikumar T, Zhang XD, Anne Eisenhauer H, Rogers R, Pedrioli PG, Matunis M, Raught B. An improved SUMmOn-based methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages. Proteomics 2010;10:254-265.
  • 35 Hsiao HH, Meulmeester E, Frank BT, Melchior F, Urlaub H. "ChopNSpice," a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides. Mol Cell Proteomics 2009;8:2664-2675.
  • 36 Cooper HJ, Tatham MH, Jaffray E, Heath JK, Lam TT, Marshall AG, Hay RT. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Anal Chem 2005;77:6310-6319.
  • 37 Gardner MW, Smith SI, Ledvina AR, Madsen JA, Coon JJ, Schwartz JC, Stafford GC Jr, Brodbelt JS. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer. Anal Chem 2009;81:8109-8118.
  • 38 Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev 2005;24:508-548.
  • 39 Chicooree N, Griffiths JR, Connolly Y, Tan C-T, Malliri A, Eyers CE, Smith DL. A proteomic approach for the identification of proteotypic SUMOylated isopeptides in simple and complex systems. Rapid Commun Mass Spectrom 2013;27:127-134.
  • 40 Wells JM, McLuckey SA. Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 2005;402:148-185.
  • 41 Blomster HA, Imanishi SY, Siimes J, Kastu J, Morrice NA, Eriksson JE, Sistonen L. In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem 2010;285:9324-19329.
  • 42 Galisson F, Mahrouche L, Courcelles M, Bonneil E, Meloche S, Chelbi-Alix MK, Thibault P. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 2011;10:1-15.
  • 43 Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability- based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999;20:3551-3567.
  • 44 Harrison AG. Peptide Sequence Scrambling Through Cyclisation of b5 Ions. J Am Soc Mass Spectrom 2008;19:1776-1780.
  • 45 Hohmann L, Sherwood C, Eastham A, Peterson A, Eng JK, Eddes JS, Shteynberg D, Martin DB. Proteomic analyses using Grifola frondosa metalloendoprotease Lys-N. J Proteome Res 2009;8:1415-1422.
  • 46 Dumont Q, Donaldson DL, Griffith WP. Screening method for isopeptides from small ubiquitin-related modifier-conjugated proteins by ion mobility mass spectrometry. Anal Chem 2011;83:9638-9642.
  • 47 Osula O, Swatkoski S, Cotter RJ. Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion. J Mass Spectrom 2012;47:644-654.
  • 48 Chen PC, Na CH, Peng J. Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 2012;43:1049-1060.
  • 49 Warren MRE, Parker CE, Mocanu V, Klapper D, Borchers CE. Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic product ions for protein ubiquitination. Rapid Commun Mass Spectrom 2005;19:429-437.
  • 50 Sobott F, Watt SJ, Smith J, Edelmann MJ, Kramer HB, Kessler BM.

Comparison of CID Versus ETD Based MS/MS Fragmentation for the Analysis of Protein Ubiquitination. J Am Soc Mass Spectrom 2009;20:1652-1659.

  • 51 Cooper HJ, Heath JK, Jaffray E, Hay RT, Lam TT, Marshall AG. Identification of sites of ubiquitination in proteins: a Fourier transform ion cyclotron resonance mass spectrometry approach. Anal Chem 2004;76:6982-6988.
  • 52 Wang D, Cotter RJ. Approach for determining protein ubiquitination sites by MALDI-TOF mass spectrometry. Anal Chem 2005;77:1458-1466.
  • 53 Wang D, Xu W, McGrath SC, Patterson C, Neckers L, Cotter RJ. Direct identification of ubiquitination sites on ubiquitin-conjugated CHIP using MALDI mass spectrometry. J Proteome Res 2005;4:1554-1560.
  • 54 Chicooree N, Connolly Y, Tan C-T, Malliri A, Li Y, Smith DL, Griffiths JR. Enhanced Detection of Ubiquitin Isopeptides Using Reductive Methylation. J Am Soc Mass Spectrom 2013;24:421-430.
  • 55 Hsu JL, Huang SY, Shiea JT, Huang WY, Chen SH. Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. JProteome Res 2005;4:101-108.
  • 56 Fu Q, Li L. De Novo Sequencing of Neuropeptides Using Reductive Isotopic Methylation and Investigation of ESI QTOF MS/MS Fragmentation Pattern of Neuropeptides with N-Terminal Dimethylation. Anal Chem 2005;77:7783-7795.
  • 57 Hsu JL, Huang SY, Chow NH, Chen SH. Stable isotope dimethyl labeling for quantitative proteomics. Anal Chem 2003;75:6843-6852.
  • 58 Chicooree N, Griffiths JR, Connolly Y, Smith DL. Chemically facilitating the generation of diagnostic ions from SUMO(2/3) remnant isopeptides. Rapid Commun Mass Spectrom 2013;27:2108-2114.
  • 59 DeSouza LV, Taylor AM, Li W, Minkoff MS, Romaschin AD, Colgan TJ, Siu KWM. Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J Proteome Res 2008;7:3525-3534.
  • 60 Griffiths JR, Chicooree N, Connolly Y, Neffling M, Lane CS, Knapman T,

Smith DL. Mass spectral enhanced detection of Ubls using SWATH acquisition: MEDUSA-simultaneous quantification of SUMO and ubiquitin- derived isopeptides. J Am Soc Mass Spectrom 2014;25:767-777.

  • 61 Vertegaal ACO. Uncovering Ubiquitin and Ubiquitin-like Signaling Networks. Chem Rev 2011;111:7923-7940.
  • 62 Tan F, Lu L, Cai Y, Wang J, Xie Y, Wang L, Gong Y, Xu BE, Wu J, Luo Y, Qiang B, Yuan J, Sun X, Peng X. Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells. Proteomics 2008;8:2885-2896.
  • 63 Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, Casado-Vela J, Lang V, Matthiesen R, Elortza F, Rodriguez MS. Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). Proteomics 2012;75:2998-3014.
  • 64 Xu G, Paige JS, Jaffrey SR. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 2010;28:868-873.
  • 65 Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell Proteomics 2011;44:325-340.
  • 66 Stes E, Laga M, Walton A, Samyn N, Timmerman E, De Smet I, Goormachtig S, Gevaert K. A COFRADIC protocol to study protein ubiquitination. J Proteome Res 2014;13:3107-3113.
  • 67 Yoshida Y, Saeki Y, Murakami A, Kawawaki J, Tsuchiya H, Yoshihara H,

Shindo M, Tanaka K. A comprehensive method for detecting ubiquitinated substrates using TR-TUBE. Proc Natl Acad Sci U S A 2015;112:4630-4635.

68 Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ. Global Identification of Modular Cullin-RING Ligase Substrates. Cell 2011;147:459-474.

  • 69 Kamitani T, Kito K, Nguyen HP, Yeh ET. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. JBiol Chem 1997;272:28557-28562.
  • 70 Wagner SA, Beli P, Weinert BT, Scholz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 2012;11:1578-1585.
  • 71 Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 2011;10:M111 013284. DOI: 10.1074/mcp.M111.013284.
  • 72 Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA. Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 2012;11:148-159.
  • 73 Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA. Refined Preparation and Use of Anti-K-e-GG Antibody Enables Routine Quantification of 10,000s of Ubiquitination Sites in Single Proteomics Experiments. Mol Cell Proteomics 2013;12:825-831.
  • 74 Udeshi ND, Mertins P, Svinkina T, Carr SA. Large-scale identification of ubiquitination sites by mass spectrometry. Nat Protoc 2013;8:1950-1960.
  • 75 Iwabuchi M, Sheng H, Thompson J, Wang L, Dubois LG, Gooden D, Moseley M, Paschen W, Yang W. Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia. J Cereb Blood Flow Metab 2014;34:425-432.
  • 76 Thomas SN, Zhang H, Cotter RJ. Application of quantitative proteomics to the integrated analysis of the ubiquitylated and global proteomes of xenograft tumor tissues. Clin Proteomics 2015;12:1-15. DOI: 10.1186/ s12014-015-9086-5.
  • 77 Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 2011;10:M110 003590. DOI: 10.1074/mcp.M110.003590.
  • 78 Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003;8:921-926.
  • 79 Filosa G, Barabino SM, Bachi A. Proteomics strategies to identify SUMO targets and acceptor sites: a survey of RNA-binding proteins SUMOylation. Neuromolecular Med 2013;15:661-676.
  • 80 Chicooree N, Unwin RD, Griffiths JR. The application of targeted mass spectrometry-based strategies to the detection and localization of posttranslational modifications. Mass Spectrom Rev 2014;34:595-626.
  • 81 Hendriks IA, D'Souza RC, Chang J-G, Mann M, Vertegaal ACO. System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun 2015;6:1-16.
  • 82 Hendriks IA, D'Souza RCJ, Yang B, Verlaan-de Vries M, Mann M, Vertegaal ACO. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 2014;21:927-936.
  • 83 Meyer JG, Yang B, Bennett E, Komives EA. A novel comprehensive discovery approach for SUMO modified proteins. Mol Cell Proteomics 2014;13:S41-S43.
  • 84 Meyer JG, Kim S, Maltby DA, Ghassemian M, Banderia N, Komives EA. Expanding Proteome Coverage with Orthogonal-specificity a-Lytic Proteases. Mol Cell Proteomics 2014;13:823-835.
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >