Desktop version

Home arrow Health

  • Increase font
  • Decrease font

<<   CONTENTS   >>

Concluding Remarks

Citrullination has been recognized as an important PTM in an increasingly wide range of diseases and other regulatory processes. There are several challenges regarding the detection of citrullinated peptides by mass spectrometry; however, with the advent of efficient enrichment methods like those developed by Tutturen et al. [104], the number of citrullinated peptides it is possible to identify has increased dramatically. The modification of citrulline inherent in these enrichment methods increases the confidence in assignment as the mass shift is no longer the same as that for deamidation. Enrichment of citrullinated peptides is in its infancy but is showing great promise for the improved identification of a PTM, which is being identified as a key regulator in cell biology.


AJC and HJC are funded by the Engineering and Physical Sciences Research

Council (EPSRC) (EP/L023490/1).


1 Koga Y, Ohtake R. Study report of the constituents of squeezed watermelon.

J Tokyo Chem Soc 1914;35:519-528.

  • 2 Ackermann D. The biological decomposition of arginine to citrulline. Hoppe- Seylers Z Physiol Chem 1931;203:66-69.
  • 3 van Venrooij WJ, Pruijn GJM. Citrullination: a small change for a protein with great consequences for rheumatoid arthritis. Arthritis Res 2000;2(4):249-251.
  • 4 Vossenaar ER, Nijenhuis S, Helsen MMA, van der Heijden A, Senshu T, van den Berg WB, van Venrooij WJ, Joosten LAB. Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis Rheum 2003;48(9):2489-2500.
  • 5 Burkhardt H, Sehnert B, Bockermann R, Engstrom A, Kalden JR, Holmdahl R. Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis. Eur J Immunol 2005;35(5):1643-1652.
  • 6 Liao F, Li ZB, Wang YN, Shi B, Gong ZC, Cheng XR. Porphyromonasgingivalis may play an important role in the pathogenesis of periodontitis-associated rheumatoid arthritis. Med Hypotheses 2009;72(6):732-735.
  • 7 Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM, Probert L, Casaccia-Bonnefil P, Moscarello MA. Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination:

A role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. JNeurosci 2006;26(44):11387-11396.

  • 8 Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, Murayama S, Asaga H, Toda T, Kimura N, Maruyama N. Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's disease. J Neurosci Res 2005;80(1):120-128.
  • 9 Chang XT, Fang KH. PADI4 and tumourigenesis. Cancer CellInt 2010;10(7):1-6.
  • 10 Chang XT, Han JX. Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 2006;45(3):183-196.
  • 11 Fert-Bober J, Sokolove J. Proteomics of citrullination in cardiovascular disease. Proteomics Clin Appl 2014;8(7-8):522-533.
  • 12 Fert-Bober J, Giles JT, Holewinski RJ, Kirk JA, Uhrigshardt H, Crowgey EL, Andrade F, Bingham CO, Park JK, Halushka MK, Kass DA, Bathon JM, Van Eyk JE. Citrullination of myofilament proteins in heart failure. Cardiovasc Res 2015;108(2):232-42.
  • 13 Esposito G, Vitale AM, Leijten FPJ, Strik AM, Koonen-Reemst AMCB, Yurttas P, Robben TJAA, Coonrod S, Gossen JA. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 2007;273(1-2):25-31.
  • 14 Li P, Wang D, Yao H, Doret P, Hao G, Shen Q, Qiu H, Zhang X, Wang Y,

Chen G, Wang Y. Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 2010;29(21):3153-3162.

  • 15 Schellekens GA, de Jong BAW, van den Hoogen FHJ, van de Putte LBA, van Venrooij WJ. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998;101(1):273-281.
  • 16 Vossenaar ER, Zendman AJW, van Venrooij WJ, Pruijn GJM. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 2003;25(11):1106-1118.
  • 17 Rogers G, Winter B, McLaughlan C, Powell B, Nesci T. Peptidylarginine deiminase of the hair follicle: Characterization, localization, and function in keratinizing tissues. J Invest Dermatol 1997;108(5):700-707.
  • 18 Nachat R, Mechin MC, Takahara H, Chavanas S, Charveron M, Serre G,

Simon M. Peptidylarginine deiminase isoforms 1-3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 2005;124(2):384-393.

  • 19 Tsuji Y, Akiyama M, Arita K, Senshu T, Shimizu H. Changing pattern of deiminated proteins in developing human epidermis. JInvest Dermatol 2003;120(5):817-822.
  • 20 Mechin MC, Sebbag M, Arnaud J, Nachat R, Foulquier C, Adoue V, Coudane F, Duplan H, Schmitt A-M, Chavanas S, Guerrin M, Serre G, Simon M. Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci 2007;29(3):147-168.
  • 21 Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM. Protein unfolding by peptidylarginine deiminase - Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 1996;271(48):30709-30716.
  • 22 Matsui T, Miyamoto K, Kubo A, Kawasaki H, Ebihara T, Hata K, Tanahashi S, Ichinose S, Imoto I, Inazawa J, Kudoh J, Amagai M. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. Embo Mol Med 2011;3(6):320-333.
  • 23 Moscarello MA, Wood DD, Ackerley C, Boulias C. Myelin in multiple- sclerosis is developmentally immature. J Clin Invest 1994;94(1):146-154.
  • 24 Musse AA, Li Z, Ackerley CA, Bienzle D, Lei H, Poma R, Harauz G, Moscarello MA, Mastronardi FG. Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis ModelMech 2008;1(4-5):229-240.
  • 25 Hsu PC, Liao YF, Lin CL, Lin WH, Liu GY, Hung HC. Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated Jurkat cells. Mol Cells 2014;37(5):426-434.
  • 26 Giles JT, Fert-Bober J, Park JK, Bingham CO, Andrade F, Fox-Talbot K, Pappas D, Rosen A, van Eyk J, Bathon JM, Halushka MK. Myocardial citrullination in rheumatoid arthritis: a correlative histopathologic study. Arthritis Research & Therapy 2012;14(1):1-8.
  • 27 Nakayama-Hamada M, Suzuki A, Kubota K, Takazawa T, Ohsaka M,

Kawaida R, Ono M, Kasuya A, Furukawa H, Yamada R, Yamamoto K. Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem Biophys Res Commun 2005;327(1):192-200.

28 van Beers JJBC, Zendman AJW, Raijmakers R, Stammen-Vogelzangs J,

Pruijn GJM. Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie 2013;95(2):299-308.

  • 29 Nakashima K, Arai S, Suzuki A, Nariai Y, Urano T, Nakayama M, Ohara O, Yamamura K, Yamamoto K, Miyazaki T. PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression. Nat Commun 2013;4:1-8.
  • 30 Li PX, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang YM. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps.

J Exp Med 2010;207(9):1853-1862.

  • 31 Yamada R. Peptidylarginine deiminase type 4, anticitrullinated peptide antibodies, and rheumatoid arthritis. Autoimmun Rev 2005;4(4):201-206.
  • 32 Chowdhury CS, Giaglis S, Walker UA, Buser A, Hahn S, Hasler P. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Research & Therapy 2014;16(3):1-8.
  • 33 Dwivedi N, Neeli I, Schall N, Wan H, Desiderio DM, Csernok E,

Thompson PR, Dali H, Briand JP, Muller S, Radic M. Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity. FASEB J 2014;28(7):2840-2851.

  • 34 Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 2012;8(11):656-664.
  • 35 Aletaha D, Neogi T, Silman AJ. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative (vol 69, pg 1580, 2010). Ann Rheum Dis 2010;69(10):1892.
  • 36 Mustila A, Korpela M, Haapala AM, Kautiainen H, Laasonen L, Mottonen T, Leirisalo-Repo M, Ilonen J, Jarvenpaa S, Luukkainen R, Hannonen P,

Grp F-RS. Anti-citrullinated peptide antibodies and the progression of radiographic joint erosions in patients with early rheumatoid arthritis treated with the FIN-RACo combination and single disease-modifying antirheumatic drug strategies. Clin Exp Rheumatol 2011;29(3):500-505.

37 Hill JA, Bell DA, Brintnell W, Yue D, Wehrli B, Jevnikar AM, Lee DM,

Hueber W, Robinson WH, Cairns E. Arthritis induced by post-translationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J Exp Med 2008;205(4):967-979.

  • 38 Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 2005;19(3):563-573.
  • 39 Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 2003;12(6):1591-1598.
  • 40 Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 2004;306(5694):279-283.
  • 41 Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM,

Pasche AC, Knabenhans C, MacDonald HR, Trumpp A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004;18(22):2747-2763.

42 Chang X, Yamada R, Sawada T, Suzuki A, Kochi Y, Yamamoto K. The inhibition of antithrombin by peptidylarginine deiminase 4 may contribute to pathogenesis of rheumatoid arthritis. Rheumatology 2005;44(3):293-298.

  • 43 Undas A, Gissel M, Kwasny-Krochin B, Gluszko P, Mann KG, Brummel- Ziedins KE. Thrombin generation in rheumatoid arthritis: Dependence on plasma factor composition. Thromb Haemost 2010;104(2):224-230.
  • 44 Ordonez A, Yelamos J, Pedersen S, Minano A, Conesa-Zamora P,

Kristensen SR, Stender MT, Thorlacius-Ussing O, Martinez-Martinez I, Vicente V, Corral J. Increased levels of citrullinated antithrombin in plasma of patients with rheumatoid arthritis and colorectal adenocarcinoma determined by a newly developed ELISA using a specific monoclonal antibody. Thromb Haemost 2010;104(6):1143-1149.

  • 45 Li PX, Yao HJ, Zhang ZQ, Li M, Luo Y, Thompson PR, Gilmour DS, Wang YM. Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 2008;28(15):4745-4758.
  • 46 Wang YJ, Li PX, Wang S, Hu J, Chen XA, Wu JH, Fisher M, Oshaben K,

Zhao N, Gu Y, Wang D, Chen G, Wang YM. Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J Biol Chem 2012;287(31):25941-25953.

47 Willis V, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN,

Luo YA, Levitt B, Glogowska M, Chandra P, Kulik L, Robinson WH,

Arend WP, Thompson PR, Holers VM. N-alpha-benzoyl-N5-(2-chloro-1- iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol 2011;186(7):4396-4404.

  • 48 Knight JS, Subramanian V, O'Dell AA, Yalavarthi S, Zhao WP, Smith CK, Hodgin JB, Thompson PR, Kaplan MJ. Peptidylarginine deiminase inhibition mitigates NET formation and protects against kidney, skin, and vascular disease in lupus-prone MRL/Lpr mice. Arthritis Rheumatol 2014;66:S281-S281.
  • 49 Becker-Merok A, Nossent JC. Prevalence, predictors and outcome of vascular damage in systemic lupus erythematosus. Lupus 2009;18(6):508-515.
  • 50 Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JCR, Zernicka-Goetz M, Nielsen ML, Gurdon JB, Kouzarides T. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 2014;507(7490):104-108.
  • 51 Luban S, Li ZG. Citrullinated peptide and its relevance to rheumatoid arthritis: an update. Int J Rheum Dis 2010;13(4):284-287.
  • 52 Young BJJ, Mallya RK, Leslie RDG, Clark CJM, Hamblin TJ. Anti-keratin antibodies in rheumatoid-arthritis. Br Med J 1979;2(6182):97-99.
  • 53 Coenen D, Verschueren P, Westhovens R, Bossuyt X. Technical and diagnostic performance of 6 assays for the measurement of citrullinated protein/peptide antibodies in the diagnosis of rheumatoid arthritis. Clin Chem 2007;53(3):498-504.
  • 54 Taylor P, Gartemann J, Hsieh J, Creeden J. A systematic review of serum biomarkers anti-cyclic citrullinated Peptide and rheumatoid factor as tests for rheumatoid arthritis. Autoimmune Dis 2011;2011:815038.
  • 55 Wilkins M. Proteomics data mining. Expert Rev Proteomics 2009;6(6):599-603.
  • 56 Cunningham DL, Sweet SMM, Cooper HJ, Heath JK. Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. JProteome Res 2010;9(5):2317-2328.
  • 57 Srivastava S. Move over proteomics, here comes glycomics. J Proteome Res 2008;7(5):1799.
  • 58 Svinkina T, Gu HB, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics 2015;14(9):2429-2440.
  • 59 Doerr A. Interactomes by mass spectrometry. Nat Methods 2012;9(11):1043.
  • 60 Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Rost H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 2013;494(7436):266-270.
  • 61 Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. The one hour yeast proteome. Mol Cell Proteomics 2014;13(1):339-347.
  • 62 Tutturen AEV, Fleckenstein B, de Souza GA. Assessing the citrullinome in rheumatoid arthritis synovial fluid with and without enrichment of citrullinated peptides. J Proteome Res 2014;13(6):2867-2873.
  • 63 Kelleher NL, Lin HY, Valaskovic GA, Aaserud DJ, Fridriksson EK, McLafferty FW. Top down versus bottom up protein characterization by tandem high- resolution mass spectrometry. J Am Chem Soc 1999;121:806-812.
  • 64 Kocher T, Pichler P, Swart R, Mechtler K. Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc 2012;7(5):882-890.
  • 65 Sarsby J, Martin NJ, Lalor PF, Bunch J, Cooper HJ. Top-down and bottom-up identification of proteins by liquid extraction surface analysis mass spectrometry of healthy and diseased human liver tissue. J Am Soc Mass Spectrom 2014;25(11):1953-1961.
  • 66 Amado FML, Vitorino RMP, Domingues PMDN, Lobo MJC, Duarte JAR. Analysis of the human saliva proteome. Expert Rev Proteomics 2005;2(4):521-539.
  • 67 Creese AJ, Shimwell NJ, Larkins KPB, Heath JK, Cooper HJ. Probing the complementarity of FAIMS and strong cation exchange chromatography in shotgun proteomics. J Am Soc Mass Spectrom 2013;24(3):431-443.
  • 68 Chevalier F. Highlights on the capacities of “Gel-based" proteomics. Proteome Science 2010;8:1-10.
  • 69 Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246:64-71.
  • 70 Jennings KR. Collision-induced decompositions of aromatic molecular ions. Int JMass Spectrom. Ion Phys. 1968;1(4-5):227-235.
  • 71 Sweet SMM, Creese AJ, Cooper HJ. Strategy for the identification of sites of phosphorylation in proteins: Neutral loss triggered electron capture dissociation. Anal Chem 2006;78(21):7563-7569.
  • 72 Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biol Mass Spectrom 1984;11:601.
  • 73 Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom 1988;16:99-111.
  • 74 Wells JM, McLuckey SA. Collision-induced dissociation (CID) of peptides and proteins. Biol Mass Spectrom 2005;402:148-185.
  • 75 Esteban-Fernandez D, El-Khatib AH, Moraleja I, Gomez-Gomez MM, Linscheid MW. Bridging the gap between molecular and elemental mass spectrometry: Higher energy collisional dissociation (HCD) revealing elemental information. Anal Chem 2015;87(3):1613-1621.
  • 76 Singh C, Zampronio CG, Creese AJ, Cooper HJ. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res 2012;11(9):4517-4525.
  • 77 Guo T, Gan CS, Zhang H, Zhu Y, Kon OL, Sze SK. Hybridization of pulsed-Q dissociation and collision-activated dissociation in linear ion trap mass spectrometer for iTRAQ quantitation. J Proteome Res 2008;7(11):4831-4840.
  • 78 Ritchie MA, Gill AC, Deery MJ, Lilley K. Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures. J Am Soc Mass Spectrom 2002;13(9):1065-1077.
  • 79 Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ:

A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007;7(3):340-350.

  • 80 Zubarev RA, Kelleher NL, McLafferty FW. ECD of multiply charged protein cations. A non-ergodic process. J Am Chem Soc 1998;120:3265-3266.
  • 81 Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JEP, Shabanowitz J, Hunt DF. The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta Proteins Proteomics 2006;1764(12):1811-1822.
  • 82 Wiesner J, Premsler T, Sickmann A. Application of electron transfer dissociation (ETD) for the analysis of post-translational modifications. Proteomics 2008;8(21):4466-4483.
  • 83 Swaney DL, McAlister GC, Wirtala M, Schwartz JC, Syka JEP, Coon JJ. Supplemental activation method for high-efficiency electron transfer dissociation of doubly-protonated peptide precursors. Anal Chem 2007;79(2):477-485.
  • 84 Good DM, Wirtala M, McAlister GC, Coon JJ. Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 2007;6(11):1942-1951.
  • 85 Ma B, Zhang KZ, Hendrie C, Liang CZ, Li M, Doherty-Kirby A, Lajoie G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 2003;17(20):2337-2342.
  • 86 Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999;20(18):3551-3567.
  • 87 Eng JK, Mccormack AL, Yates JR. An approach to correlate tandem mass- spectral data of peptides with amino-acid-sequences in a protein database.

J Am Soc Mass Spectrom 1994;5(11):976-989.

  • 88 Siepen JA, Keevil E-J, Knight D, Hubbard SJ. Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J Proteome Res 2007;6(1):399-408.
  • 89 Bennike T, Lauridsen KB, Kruse Olesen M, Andersen V, Birkelund S, Stensballe A. Optimizing the identification of citrullinated peptides by mass spectrometry: Utilizing the inability of trypsin to cleave after citrullinated amino acids. J Proteomics Bioinf 2013;6(12):288-295.
  • 90 Jin ZC, Fu ZM, Yang J, Troncosco J, Everett AD, Van Eyk JE. Identification and characterization of citrulline-modified brain proteins by combining HCD and CID fragmentation. Proteomics 2013;13(17):2682-2691.
  • 91 De Ceuleneer M, De Wit V, Van Steendam K, Van Nieuwerburgh F, Tilleman K, Deforce D. Modification of citrulline residues with 2,3-butanedione facilitates their detection by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2011;25(11):1536-1542.
  • 92 De Ceuleneer M, Van Steendam K, Dhaenens M, Deforce D. In vivo relevance of citrullinated proteins and the challenges in their detection. Proteomics 2012;12(6):752-760.
  • 93 Hao P, Ren Y, Datta A, Tam JP, Sze SK. Evaluation of the effect of trypsin digestion buffers on artificial deamidation. J Proteome Res 2015;14(2):1308-1314.
  • 94 Dasari S, Wilmarth PA, Rustvold DL, Riviere MA, Nagalla SR, David LL. Reliable detection of deamidated peptides from lens crystallin proteins using changes in reversed-phase elution times and parent ion masses. J Proteome Res 2007;6(9):3819-3826.
  • 95 McLaffery FW, Bryce TA. Metastable-ion characteristics: Characterization of isomeric molecules. Chem Commun 1967;23:1215-1217.
  • 96 Hao G, Wang DC, Gu J, Shen QY, Gross SS, Wang YM. Neutral loss of isocyanic acid in peptide CID spectra: A novel diagnostic marker for mass spectrometric identification of protein citrullination. J Am Soc Mass Spectrom 2009;20(4):723-727.
  • 97 Creese AJ, Grant MM, Chapple LLC, Cooper HJ. On-line liquid chromatography neutral loss-triggered electron transfer dissociation mass spectrometry for the targeted analysis of citrullinated peptides. Anal Methods 2011;3(2):259-266.
  • 98 Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci 2004;101(26):9528-9533.
  • 99 Holm A, Rise F, Sessler N, Sollid LM, Undheim K, Fleckenstein B. Specific modification of peptide-bound citrulline residues. Anal Biochem 2006;352(1):68-76.
  • 100 Stensland M, Holm A, Kiehne A, Fleckenstein B. Targeted analysis of protein citrullination using chemical modification and tandem mass spectrometry. Rapid Commun Mass Spectrom 2009;23(17):2754-2762.
  • 101 Slebos RJC, Brock JWC, Winters NF, Stuart SR, Martinez MA, Li M, Chambers MC, Zimmerman LJ, Ham AJ, Tabb DL, Liebler DC. Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry.

JProteome Res 2008;7(12):5286-5294.

  • 102 Kubota K, Yoneyama-Takazawa T, Ichikawa K. Determination of sites citrullinated by peptidylarginine deiminase using O-18 stable isotope labeling and mass spectrometry. Rapid Commun Mass Spectrom 2005;19(5):683-688.
  • 103 Tutturen AEV, Holm A, Fleckenstein B. Specific biotinylation and sensitive enrichment of citrullinated peptides. Anal Bioanal Chem 2013;405(29):9321-9331.
  • 104 Tutturen AEV, Holm A, Jorgensen M, Stadtmuller P, Rise F, Fleckenstein B.

A technique for the specific enrichment of citrulline-containing peptides. Anal Biochem 2010;403(1-2):43-51.

  • 105 Bhattacharya SK, Crabb JS, Bonilha VL, Gu XR, Takahara H, Crabb JW. Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Invest Ophthalmol Vis Sci 2006;47(6):2508-2514.
  • 106 Ytterberg AJ, Reynisdottir G, Ossipova E, Rutishauser D, Hensvold A,

Eklund A, Skold M, Grunewald J, Lundberg K, Malmstrom V, Jakobsson PJ, Zubarev R, Klareskog L, Catrina AI. Identification of shared citrullinated immunological targets in the lungs and joints of patients with rheumatoid arthritis. Ann Rheum Dis 2012;71:A19-A19.

107 Cao LG, Sun DM, Whitaker JN. Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire. J Neuroimmunol 1998;88(1-2):21-29.

  • 108 Kan R, Jin M, Subramanian V, Causey CP, Thompson PR, Coonrod SA. Potential role for PADI-mediated histone citrullination in preimplantation development. BMC Developmental Biology 2012;12(19):1-10.
  • 109 Hermansson M, Artemenko K, Ossipova E, Eriksson H, Lengqvist J, Makrygiannakis D, Catrina AI, Nicholas AP, Klareskog L, Savitski M,

Zubarev RA, Jakobsson PJ. MS analysis of rheumatoid arthritic synovial tissue identifies specific citrullination sites on fibrinogen. Proteomics Clin Appl 2010;4(5):511-518.

  • 110 Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Biol 2002;1(5):376-386.
  • 111 van Beers JJBC, Schwarte CM, Stammen-Vogelzangs J, Oosterink E, Bozic B, Pruijn GJM. The rheumatoid arthritis synovial fluid citrullinome reveals novel citrullinated epitopes in apolipoprotein E, myeloid nuclear differentiation antigen, and ss-actin. Arthritis Rheum 2013;65(1):69-80.
  • 112 Colantonio DA, Dunkinson C, Bovenkamp DE, Van Eyk JE. Effective removal of albumin from serum. Proteomics 2005;5(15):3831-3835.
  • 113 Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012;11(6):1-17.
  • 114 Kane LA, Neverova I, Van Eyk JE. Subfractionation of heart tissue: the “in sequence" myofilament protein extraction of myocardial tissue. Methods Mol Biol 2007;357:87-90.
  • 115 Kinloch A, Lundberg K, Wait R, Wegner N, Lim NH, Zendman AJW, Saxne T, Malmstrom V, Venables PJ. Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum 2008;58(8):2287-2295.
  • 116 De Ceuleneer M, Van Steendam K, Maarten D, Elewaut D, Deforce D. Quantification of citrullination by means of skewed isotope distribution pattern. J Proteome Res 2012;11(11):5245-5251.
<<   CONTENTS   >>

Related topics