Desktop version

Home arrow Health arrow Analysis of Protein Post-Translational Modifications by Mass Spectrometry


  • 1 Bettelheim FR. Tyrosine-O-sulfate in a peptide from fibrinogen. J Am Chem Soc 1954;76:2838-2839.
  • 2 Gregory H, Hardy PM, Jones DS, Kenner GW, Sheppard RC. Antral hormone gastrin. Structure of gastrin. Nature 1964;204:931-933.
  • 3 Mutt V, Jorpes JE. Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. Eur J Biochem 1968;6:156-162.
  • 4 Fluharty AL, Stevens RL, Goldstein EB, Kihara H. The activity of arylsulfatase A and B on tyrosine O-sulfates. Biochim Biophys Acta 1979;566:321-326.
  • 5 Hille A, Rosa P, Huttner WB. Tyrosine sulfation: a post-translational modification of proteins destined for secretion? FEBS Lett 1984;177:129-134.
  • 6 Baeuerle PA, Huttner WB. Tyrosine sulfation is a trans-Golgi-specific protein modification. J Cell Biol 1987;105:2655-2664.
  • 7 Hille A, Braulke T, von Figura K, Huttner WB. Occurrence of tyrosine sulfate in proteins--a balance sheet. 1. Secretory and lysosomal proteins. Eur J Biochem 1990;188:577-586.
  • 8 Hille A, Huttner WB. Occurrence of tyrosine sulfate in proteins--a balance sheet. 2. Membrane proteins. Eur J Biochem 1990;188:587-596.
  • 9 Liu MC, Yu S, Sy J, Redman CM, Lipmann F. Tyrosine sulfation of proteins from the human hepatoma cell line HepG2. Proc Natl Acad Sci U S A 1985;82:7160-7164.
  • 10 Ouyang YB, Lane WS, Moore KL. Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common post-translational modification of eukaryotic proteins. Proc Natl Acad Sci U S A 1998;95:2896-2901.
  • 11 Beisswanger R, Corbeil D, Vannier C, Thiele C, Dohrmann U, Kellner R, Ashman K, Niehrs C, Huttner WB. Existence of distinct tyrosylprotein sulfotransferase genes: molecular characterization of tyrosylprotein sulfotransferase-2. Proc Natl Acad Sci U S A 1998;95:11134-1П39.
  • 12 Hanai H, Nakayama D, Yang H, Matsubayashi Y, Hirota Y, Sakagami Y. Existence of a plant tyrosylprotein sulfotransferase: novel plant enzyme catalyzing tyrosine O-sulfation of preprophytosulfokine variants in vitro.

FEBS Lett 2000;470:97-101.

  • 13 Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y. Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci U S A 2009;106:15067-15072.
  • 14 Han SW, Lee SW, Bahar O, Schwessinger B, Robinson MR, Shaw JB, Madsen JA, Brodbelt JS, Ronald PC. Tyrosine sulfation in a Gram-negative bacterium. Nat Commun 2012;3:1153.
  • 15 Pittman DD, Tomkinson KN, Michnick D, Selighsohn U, Kaufman RJ. Post-translational sulfation of factor V is required for efficient thrombin cleavage and activation and for full procoagulant activity. Biochemistry 1994;33:6952-6959.
  • 16 Pittman DD, Wang JH, Kaufman RJ. Identification and functional importance of tyrosine sulfate residues within recombinant factor VIII. Biochemistry 1992;31:3315-3325.
  • 17 Michnick DA, Pittman DD, Wise RJ, Kaufman RJ. Identification of individual tyrosine sulfation sites within factor VIII required for optimal activity and efficient thrombin cleavage. J Biol Chem 1994;269:20095-20102.
  • 18 Leyte A, van Schijndel HB, Niehrs C, Huttner WB, Verbeet MP, Mertens K, van Mourik JA. Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor. J Biol Chem 1991;266:740-746.
  • 19 Wilkins PP, Moore KL, McEver RP, Cummings RD. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J Biol Chem 1995;270:22677-22680.
  • 20 Hortin GL, Farries TC, Graham JP, Atkinson JP. Sulfation of tyrosine residues increases activity of the fourth component of complement. Proc Natl Acad Sci U S A 1989;86:1338-1342.
  • 21 Marchese P, Murata M, Mazzucato M, Pradella P, De Marco L, Ware J, Ruggeri ZM. Identification of three tyrosine residues of glycoprotein Ib alpha with distinct roles in von Willebrand factor and alpha-thrombin binding. J Biol Chem 1995;270:9571-9578.
  • 22 Farzan M, Schnitzler CE, Vasilieva N, Leung D, Kuhn J, Gerard C, Gerard NP, Choe H. Sulfated tyrosines contribute to the formation of the C5a docking site of the human C5a anaphylatoxin receptor. J Exp Med 2001;193:1059-1066.
  • 23 Costagliola S, Panneels V, Bonomi M, Koch J, Many MC, Smits G, Vassart G. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO J 2002;21:504-513.
  • 24 Fieger CB, Sassetti CM, Rosen SD. Endoglycan, a member of the CD34 family, functions as an L-selectin ligand through modification with tyrosine sulfation and sialyl Lewis x. J Biol Chem 2003;278:27390-27398.
  • 25 Gao JM, Xiang RL, Jiang L, Li WH, Feng QP, Guo ZJ, Sun Q, Zeng ZP, Fang FD. Sulfated tyrosines 27 and 29 in the N-terminus of human CXCR3 participate in binding native IP-10. Acta Pharmacol Sin 2009;30:193-201.
  • 26 Ludeman JP, Stone MJ. The structural role of receptor tyrosine sulfation in chemokine recognition. Br J Pharmacol 2014;171:1167-1179.
  • 27 Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J, Choe H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 1999;96:667-676.
  • 28 Farzan M, Babcock GJ, Vasilieva N, Wright PL, Kiprilov E, Mirzabekov T,

Choe H. The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry. J Biol Chem 2002;277:29484-29489.

  • 29 Hsu W, Rosenquist GL, Ansari AA, Gershwin ME. Autoimmunity and tyrosine sulfation. Autoimmun Rev 2005;4:429-435.
  • 30 Lim A, Prokaeva T, McComb ME, Connors LH, Skinner M, Costello CE. Identification of S-sulfonation and S-thiolation of a novel transthyretin Phe33Cys variant from a patient diagnosed with familial transthyretin amyloidosis. Protein Sci 2003;12:1775-1785.
  • 31 Medzihradszky KF, Darula Z, Perlson E, Fainzilber M, Chalkley RJ, Ball H, Greenbaum D, Bogyo M, Tyson DR, Bradshaw RA, Burlingame AL. O-sulfonation of serine and threonine: mass spectrometric detection and characterization of a new post-translational modification in diverse proteins throughout the eukaryotes. Mol Cell Proteomics 2004;3:429-440.
  • 32 Dave KA, Whelan F, Bindloss C, Furness SG, Chapman-Smith A, Whitelaw ML, Gorman JJ. Sulfonation and phosphorylation of regions of the dioxin receptor susceptible to methionine modifications. Mol Cell Proteomics 2009;8:706-719.
  • 33 Gharib M, Marcantonio M, Lehmann SG, Courcelles M, Meloche S, Verreault A, Thibault P. Artifactual sulfation of silver-stained proteins: implications for the assignment of phosphorylation and sulfation sites. Mol Cell Proteomics 2009;8:506-518.
  • 34 Hortin G, Fok KF, Toren PC, Strauss AW. Sulfation of a tyrosine residue in the plasmin-binding domain of alpha 2-antiplasmin. JBiol Chem 1987;262: 3082-3085.
  • 35 Yun HY, Keutmann HT, Eipper BA. Alternative splicing governs sulfation of tyrosine or oligosaccharide on peptidylglycine alpha-amidating monooxygenase. J Biol Chem 1994;269:10946-10955.
  • 36 Gao J, Choe H, Bota D, Wright PL, Gerard C, Gerard NP. Sulfation of tyrosine 174 in the human C3a receptor is essential for binding of C3a anaphylatoxin.

J Biol Chem 2003;278:37902-37908.

  • 37 Hortin G, Folz R, Gordon JI, Strauss AW. Characterization of sites of tyrosine sulfation in proteins and criteria for predicting their occurrence. Biochem Biophys Res Commun 1986;141:326-333.
  • 38 Severs JC, Carnine M, Eguizabal H, Mock KK. Characterization of tyrosine sulfate residues in antihemophilic recombinant factor VIII by liquid chromatography electrospray ionization tandem mass spectrometry and amino acid analysis. Rapid Commun Mass Spectrom 1999;13:1016-1023.
  • 39 Meh DA, Siebenlist KR, Brennan SO, Holyst T, Mosesson MW. The amino acid sequence in fibrin responsible for high affinity thrombin binding. Thromb Haemost 2001;85:470-474.
  • 40 Onnerfjord P, Heathfield TF, Heinegard D. Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J Biol Chem 2004;279:26-33.
  • 41 Dong JF, Li CQ, Lopez JA. Tyrosine sulfation of the glycoprotein Ib-IX complex: identification of sulfated residues and effect on ligand binding. Biochemistry 1994;33:13946-13953.
  • 42 Cabras T, Fanali C, Monteiro JA, Amado F, Inzitari R, Desiderio C, Scarano E, Giardina B, Castagnola M, Messana I. Tyrosine polysulfation of human salivary histatin 1. A post-translational modification specific of the submandibular gland. J Proteome Res 2007;6:2472-2480.
  • 43 Yu Y, Hoffhines AJ, Moore KL, Leary JA. Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat Methods 2007;4:583-588.
  • 44 Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem 2006;281:30561-3072.
  • 45 Pouyani T, Seed B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell 1995;83:333-343.
  • 46 Zaia J, Boynton R, Heinegard D, Barry F. Post-translational modifications to human bone sialoprotein determined by mass spectrometry. Biochemistry 2001;40:12983-12991.
  • 47 Sahin-Toth M, Kukor Z, Nemoda Z. Human cationic trypsinogen is sulfated on Tyr154. FEBS J 2006;273:5044-5050.
  • 48 Yagami T, Kitagawa K, Futaki S. Liquid secondary-ion mass spectrometry of peptides containing multiple tyrosine-O-sulfates. Rapid Commun Mass Spectrom 1995;9:1335-1341.
  • 49 Wolfender JL, Chu F, Ball H, Wolfender F, Fainzilber M, Baldwin MA, Burlingame AL. Identification of tyrosine sulfation in Conus pennaceus conotoxins alpha-PnIA and alpha-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ ionization (MALDI) and atmospheric pressure MALDI mass spectrometry.

J Mass Spectrom 1999;34:447-454.

  • 50 Gorman JJ, Ferguson BL, Nguyen TB. Use of 2,6-dihydroxyacetophenone for analysis of fragile peptides, disulphide bonding and small proteins by matrix- assisted laser desorption/ionization. Rapid Commun Mass Spectrom 1996;10:529-536.
  • 51 Medzihradszky KF, Phillipps NJ, Senderowicz L, Wang P, Turck CW. Synthesis and characterization of histidine-phosphorylated peptides. Protein Sci 1997;6:1405-1411.
  • 52 Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF. The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 2006;1764:1811-1822.
  • 53 Good DM, Wirtala M, McAlister GC, Coon JJ. Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 2007;6:1942-1951.
  • 54 Hersberger KE, Hakansson K. Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation. Anal Chem 2012;84:6370-6377.
  • 55 Robinson MR, Moore KL, Brodbelt JS. Direct identification of tyrosine sulfation by using ultraviolet photodissociation mass spectrometry. J Am Soc Mass Spectrom 2014;25:1461-1471.
  • 56 Kehoe JW, Velappan N, Walbolt M, Rasmussen J, King D, Lou J, Knopp K, Pavlik P, Marks JD, Bertozzi CR, Bradbury AR. Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics 2006;5:2350-2363.
  • 57 Hoffhines AJ, Damoc E, Bridges KG, Leary JA, Moore KL. Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody. J Biol Chem 2006;281:37877-37887.
  • 58 Demesa Balderrama G, Meneses EP, Hernandez Orihuela L, Villa Hernandez O, Castro Franco R, Pando Robles V, Ferreira Batista CV. Analysis of sulfated peptides from the skin secretion of the Pachymedusa dacnicolor frog using IMAC-Ga enrichment and high-resolution mass spectrometry. Rapid Commun Mass Spectrom 2011;25:1017-1027.
  • 59 Amano Y, Shinohara H, Sakagami Y, Matsubayashi Y. Ion-selective enrichment of tyrosine-sulfated peptides from complex protein digests. Anal Biochem 2005;346:124-131.
  • 60 Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 2008;80:62-76.
  • 61 Alpert AJ, Hudecz O, Mechtler K. Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography. Anal Chem 2015;87:4704-4711.
  • 62 Villen J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 2008;3:1630-1638.
  • 63 Salek M, Costagliola S, Lehmann WD. Protein tyrosine-O-sulfation analysis by exhaustive product ion scanning with minimum collision offset in a NanoESI Q-TOF tandem mass spectrometer. Anal Chem 2004;76:5136-5142.
  • 64 Carr SA, Annan RS, Huddleston MJ. Mapping post-translational modifications of proteins by MS-based selective detection: application to phosphoproteomics. Meth Enzymol 2005;405:82-115.
  • 65 Baker PR, Trinidad JC, Chalkley RJ. Modification site localization scoring integrated into a search engine. Mol Cell Proteomics 2011;10:M111.008078.
  • 66 Chalkley RJ, Baker PR, Medzihradszky KF, Lynn AJ, Burlingame AL. In-depth analysis of tandem mass spectrometry data from disparate instrument types. Mol Cell Proteomics 2008;7:2386-2398.
  • 67 Chalkley RJ, Bandeira N, Chambers MC, Clauser KR, Cottrell JS, Deutsch EW, Kapp EA, Lam HH, McDonald WH, Neubert TA, Sun RX. Proteome informatics research group (iPRG)_2012: a study on detecting modified peptides in a complex mixture. Mol Cell Proteomics 2014;13:360-371.
  • 68 Rosenquist GL, Nicholas HB Jr. Analysis of sequence requirements for protein tyrosine sulfation. Protein Sci 1993;2:215-222.
  • 69 Nicholas HB Jr, Chan SS, Rosenquist GL. Reevaluation of the determinants of tyrosine sulfation. Endocrine 1999;11:285-292.
  • 70 Yu KM, Liu J, Moy R, Lin HC, Nicholas HB Jr, Rosenquist GL. Prediction of tyrosine sulfation in seven-transmembrane peptide receptors. Endocrine 2002;19:333-338.
  • 71 Lin HC, Tsai K, Chang BL, Liu J, Young M, Hsu W, Louie S, Nicholas HB Jr, Rosenquist GL. Prediction of tyrosine sulfation sites in animal viruses.

Biochem Biophys Res Commun 2003;312:1154-1158.

  • 72 Monigatti F, Gasteiger E, Bairoch A, Jung E. The Sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics 2002;18:
  • 769-770.
  • 73 Chang WC, Lee TY, Shien DM, Hsu JB, Horng JT, Hsu PC, Wang TY, Huang HD, Pan RL. Incorporating support vector machine for identifying protein tyrosine sulfation sites. J Comput Chem 2009;30:2526-2537.
  • 74 Huang SY, Shi SP, Qiu JD, Sun XY, Suo SB, Liang RP. PredSulSite: prediction of protein tyrosine sulfation sites with multiple features and analysis. Anal Biochem 2012;428:16-23.
< Prev   CONTENTS   Source   Next >