Desktop version

Home arrow Economics arrow American Trypanosomiasis Chagas Disease, Second Edition: One Hundred Years of Research



The authors wish to acknowledge the contributions to an earlier version by Paula Marcet and Fernando Monteiro, and technical assistance from Silvia Justi and Adrienne Woods. This work was made possible in part by support from National Science Foundation (NSF) grant BCS- 1216193 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program.


  • 1. Guhl F. Chagas disease in Andean countries. Mem Inst Oswaldo Cruz 2007; 102(Suppl. 1):29—38.
  • 2. Dias JC, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 2002;97(5):603 —12.
  • 3. Hashimoto K, Schofield CJ. Elimination of Rhodnius prolixus in Central America. Parasit Vectors 2012;5:45.
  • 4. Giirtler RE, Kitron U, Cecere MC, Segura EL, Cohen JE. Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina. Proc Natl Acad Sci USA 2007;104(41):16194—9.
  • 5. World Health Organization. Control of Chagas disease (Second Report). In: WHO, editor. WHO Technical Report Series 905. Geneva: World Health Organization; 2002. p. 109.
  • 6. World Health Organization. Weekly Epidemiology Report: Chagas disease in Latin America: an epidemiological update based on 2010 estimates, Switzerland; 2015.
  • 7. Breniere SF, Salas R, Buitrago R, Bremond P, Sosa V, Bosseno MF, et al. Wild populations of Triatoma infestans are highly connected to intra-peridomestic conspecific populations in the Bolivian Andes. PLoS ONE 2013;8(11):e80786.
  • 8. Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro FA, Miles MA. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS NTD 2008;2(4):e210.
  • 9. Aguilar HM, Abad-Franch F, Dias JC, Junqueira AC, Coura JR. Chagas disease in the Amazon region. Mem Inst Oswaldo Cruz 2007;102(Suppl. 1):47—56.
  • 10. Germano MD, Picollo MI, Mougabure-Cueto GA. Microgeographical study of insecticide resistance in Triatoma infestans from Argentina. Acta Trop 2013;128(3):561—5.
  • 11. Mathers CD, Lopez AD, Murray CJL. The burden of disease and mortality by condition: data, methods, and results for 2001. In: Lopez AD, Mathers CD, Ezzati M, Murray CJL, Jamison DT, editors. Global Burden of Disease and Risk Factors. New York: Oxford University Press-World Bank; 2006. p. 45—234.
  • 12. Abad-Franch F, Monteiro FA, Jaramillo ON, Gurgel-Goncalves R, Dias FB, Diotaiuti L. Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: a multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Trop 2009; 110(2-3):159—77.
  • 13. Dumonteil E, Tripet F, Ramirez-Sierra MJ, Payet V, Lanzaro G, Menu F. Assessment of Triatoma dimidiata dispersal in the Yucatan Peninsula of Mexico by morphometry and microsatellite markers. Am J Trop Med Hyg 2007;76(5):930—7.
  • 14. Stevens L, Monroy MC, Rodas AG, Hicks RM, Lucero DE, Lyons LA, et al. Migration and gene flow among domestic populations of the Chagas insect vector Triatoma dimidiata (Hemiptera: Reduviidae) detected by microsatellite loci. J Med Entomol 2015;52(3):419—28.
  • 15. Gomez-Palacio A, Triana O, Jaramillo ON, Dotson EM, Marcet PL. Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae). Infect Genet Evol 2013;20:352—61.
  • 16. Perez de Rosas AR, Segura EL, Garcia BA. Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Mol Ecol 2007;16(7):1401 —12.
  • 17. Marcet PL, Mora MS, Cutrera AP, Jones L, Giirtler RE, Kitron U, et al. Genetic structure of Triatoma infestans populations in rural communities of Santiago Del Estero, northern Argentina. Infect Genet Evol 2008;8:835-46.
  • 18. Perez de Rosas AR, Segura EL, Fichera L, Garcia BA. Macrogeographic and microgeographic genetic structure of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica 2008;133(3):247-60.
  • 19. Pizarro JC, Gilligan LM, Stevens L. Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS NTD 2008;2(3):e202.
  • 20. Richer W, Kengne P, Cortez MR, Perrineau MM, Cohuet A, Fontenille D, et al. Active dispersal by wild Triatoma infestans in the Bolivian Andes. Trop Med Int Health 2007;12(6):759-64.
  • 21. Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, et al. Population structure of Anopheles gambiae in Africa. J Hered 2003;94(2):133-47.
  • 22. Mas-Coma S, Bargues MD. Populations, hybrids and the systematic concepts of species and subspecies in Chagas disease triatomine vectors inferred from nuclear ribosomal and mitochondrial DNA. Acta Trop 2009;110(2-3):112-36.
  • 23. Dotson EM, Beard CB. Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 2001;10:205-15.
  • 24. Almeida CE, Pacheco RS, Haag K, Dupas S, Dotson EM, Costa J. Inferring from the Cyt B gene the Triatoma brasiliensis Neiva, 1911 (Hemiptera: Reduviidae: Triatominae) genetic structure and domiciliary infestation in the state of Paraiba, Brazil. Am J Trop Med Hyg 2008;78(5):791-802.
  • 25. Dorn PL, Calderon C, Melgar S, Moguel B, Solorzano E, Dumonteil E, et al. Two distinct Triatoma dimidiata (Latreille, 1811) taxa are found in sympatry in Guatemala and Mexico. PLoS NTD 2009;3(3):e393.
  • 26. Blandon-Naranjo M, Zuriaga MA, Azofeifa G, Zeledon R, Bargues MD. Molecular evidence of intraspecific variability in different habitat-related populations of Triatoma dimi- diata (Hemiptera: Reduviidae) from Costa Rica. Parasitol Res 2010;106(4):895-905.
  • 27. Bargues MD, Klisiowicz DR, Gonzalez-Candelas F, Ramsey JM, Monroy C, Ponce C, et al. Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma. PLoS NTD 2008;2(5):e233.
  • 28. Grisales N, Triana O, Angulo V, Jaramillo N, Parra-Henao G, Panzera F, et al. Genetic differentiation of three Colombian populations of Triatoma dimidiata (Heteroptera: Reduviidae) by ND4 mitochondrial gene molecular analysis. Biomed Rev Inst Nacl Salud 2010;30(2):207-14.
  • 29. Gomez-Palacio A, Triana O. Molecular evidence of demographic expansion of the Chagas disease vector Triatoma dimidiata (Hemiptera, Reduviidae, Triatominae) in Colombia. PLoS NTD 2014;8(3):e2734.
  • 30. Monteiro FA, Donnelly MJ, Beard CB, Costa J. Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil. Mol Phylogenet Evol 2004;32(1):46-56.
  • 31. Cavassin FB, Kuehn CC, Kopp RL, Thomaz-Soccol V, Da Rosa JA, Luz E, et al. Genetic variability and geographical diversity of the main Chagas’ disease vector Panstrongylus megistus (Hemiptera: Triatominae) in Brazil based on ribosomal DNA intergenic sequences. J Med Entomol 2014;51(3):616-28.
  • 32. Giordano R, Cortez JC, Paulk S, Stevens L. Genetic diversity of Triatoma infestans (Hemiptera: Reduviidae) in Chuquisaca, Bolivia based on the mitochondrial cytochrome b gene. Mem Inst Oswaldo Cruz 2005;100(7):753-60.
  • 33. Monteiro FA, Perez R, Panzera F, Dujardin JP, Galvao C, Rocha D, et al. Mitochondrial DNA variation of Triatoma infestans populations and its implication on the specific status of T. melanosoma. Mem Inst Oswaldo Cruz 1999;94(Suppl. 1):229—38.
  • 34. Piccinali RV, Marcet PL, Noireau F, Kitron U, Gurtler RE, Dotson EM. Molecular population genetics and phylogeography of the Chagas disease vector Triatoma infestans in South America. J Med Entomol 2009;46(4):796—809.
  • 35. Bargues MD, Klisiowicz DR, Panzera F, Noireau F, Marcilla A, Perez R, et al. Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infect Genet Evol 2006;6(1):46—62.
  • 36. Herrera-Aguilar M, Be-Barragan LA, Ramirez-Sierra MJ, Tripet F, Dorn P, Dumonteil E. Identification of a large hybrid zone between sympatric sibling species of Triatoma dimidiata in the Yucatan peninsula, Mexico, and its epidemiological importance. Infect Genet Evol 2009;9(6):1345—51.
  • 37. Monteiro FA, Barrett TV, Fitzpatrick S, Cordon-Rosales C, Feliciangeli D, Beard CB. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol Ecol 2003;12(4):997—1006.
  • 38. Dorn PL, Monroy C, Curtis A. Triatoma dimidiata (Latreille, 1811): a review of its diversity across its geographic range and the relationship among populations. Infect Genet Evol. 2007;7(2):343—52.
  • 39. Martinez-Hernandez F, Martinez-Ibarra JA, Catala S, Villalobos G, de la Torre P, Laclette JP, et al. Natural crossbreeding between sympatric species of the phyllosoma complex (Insecta: Hemiptera: Reduviidae) indicate the existence of only one species with morphologic and genetic variations. Am J Trop Med Hyg 2010;82(1):74—82.
  • 40. Wright S. Variability within and among natural populations. Chicago: University of Chicago Press; 1978.
  • 41. Nielsen R, Slatkin M. An introduction to population genetics: theory and applications. Sinauer Associates, Inc; 2013.
  • 42. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res 1967;27(2):209—20.
  • 43. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155(2):945—59.
  • 44. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 2007;7(4):574—8.
  • 45. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992;131(2):479—91.
  • 46. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995;139(1):457—62.
  • 47. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 2010;10(3): 564—7.
  • 48. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 2009;25:1451—2.
  • 49. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989;123(3):585—95.
  • 50. Schofield CJ, Jannin J, Salvatella R. The future of Chagas disease control. Trends Parasitol 2006;22(12):583—8.
  • 51. Noireau F, Flores R, Gutierrez T, Dujardin JP. Detection of sylvatic dark morphs of Triatoma infestans in the Bolivian Chaco. Mem Inst Oswaldo Cruz 1997;92(5):583—4.
  • 52. Panzera F, Dujardin JP, Nicolini P, Caraccio MN, Rose V, Tellez T, et al. Genomic changes of Chagas disease vector, South America. Emerg Infect Dis 2004;10(3): 438-46.
  • 53. Waleckx E, Salas R, Huaman N, Buitrago R, Bosseno MF, Aliaga C, et al. New insights on the Chagas disease main vector Triatoma infestans (Reduviidae, Triatominae) brought by the genetic analysis of Bolivian sylvatic populations. Infect Genet Evol 2011; 11(5):1045-57.
  • 54. Panzera F, Ferrandis I, Ramsey J, Salazar-Schettino PM, Cabrera M, Monroy C, et al. Genome size determination in Chagas disease transmitting bugs (Hemiptera: Triatominae) by flow cytometry. Am J Trop Med Hyg 2007;76(3):516-21.
  • 55. Noireau F. Wild Triatoma infestans, a potential threat that needs to be monitored. Mem Inst Oswaldo Cruz 2009;104(Suppl. 1):60-4.
  • 56. Panzera F, Ferreiro MJ, Pita S, Calleros L, Perez R, Basmadjian Y, et al. Evolutionary and dispersal history of Triatoma infestans, main vector of Chagas disease, by chromosomal markers. Infect Genet Evol 2014;27:105-13.
  • 57. Martinez A, Olmedo R, Carcavallo RU. Una nueva subespecie Argentina de Triatoma infestans. Chagas 1987;4(1):7-8.
  • 58. Ceballos LA, Piccinali RV, Berkunsky I, Kitron U, Gurtler RE. First finding of melanic sylvatic Triatoma infestans (Hemiptera: Reduviidae) colonies in the Argentine Chaco. J Med Entomol. 2009;46(5):1195-202.
  • 59. Bacigalupo A, Segura JA, Garcia A, Hidalgo J, Galuppo S, Cattan PE. First finding of Chagas disease vectors associated with wild bushes in the Metropolitan Region of Chile. Rev Med Chile 2006;134(10):1230-6.
  • 60. Piccinali RV, Marcet PL, Ceballos LA, Kitron U, Guertler RE, Dotson EM. Genetic variability, phylogenetic relationships and gene flow in Triatoma infestans dark morphs from the Argentinean Chaco. Infect Genet Evol 2011;11(5):895-903.
  • 61. Garcia BA, Manfredi C, Fichera L, Segura EL. Short report: variation in mitochondrial 12S and 16S ribosomal DNA sequences in natural populations of Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 2003;68(6):692-4.
  • 62. Noireau F, Cortez MG, Monteiro FA, Jansen AM, Torrico F. Can wild Triatoma infestans foci in Bolivia jeopardize Chagas disease control efforts? Trends Parasitol 2005;21(1):7-10.
  • 63. Ceballos LA, Piccinali RV, Marcet PL, Vazquez-Prokopec GM, Cardinal MV, Schachter-Broide J, et al. Hidden sylvatic foci of the main vector of Chagas disease Triatoma infestans: threats to the vector elimination campaign? PLoS NTD 2011;5(10).
  • 64. Quisberth S, Waleckx E, Monje M, Chang B, Noireau F, Breniere SF. “Andean” and “non-Andean” ITS-2 and mtCytB haplotypes of Triatoma infestans are observed in the Gran Chaco (Bolivia): population genetics and the origin of reinfestation. Infect Genet Evol 2011;11(5):1006-14.
  • 65. World Health Organization. Geographical distribution of arthropod-borne diseases and their principal vectors. Geneva: WHO/VBC/89.967; 1989.
  • 66. Garcia M, Menes M, Dorn PL, Monroy C, Richards B, Panzera F, et al. Reproductive isolation revealed in preliminary crossbreeding experiments using field collected Triatoma dimidiata (Hemiptera: Reduviidae) from three ITS-2 defined groups. Acta Trop 2013;128(3):714-18.
  • 67. Panzera F, Ferrandis I, Ramsey J, Ordonez R, Salazar-Schettino PM, Cabrera M, et al. Chromosomal variation and genome size support existence of cryptic species of

Triatoma dimidiata with different epidemiological importance as Chagas disease vectors. Trop Med Int Health 2006;11(7):1092—103.

  • 68. Monteiro FA, Peretolchina T, Lazoski C, Harris K, Dotson EM, Abad-Franch F, et al. Phylogeographic pattern and extensive mitochondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata. PLoS ONE 2013;8(8): e70974.
  • 69. Dorn PL, de la RUa NM, Axen H, Smith N, Richards BR, Charabati J, et al. Hypothesis testing clarifies the systematics of the main Central American Chagas disease vector, Triatoma dimidiata (Latreille, 1811), across its geographic range. Infect Genet Evol 2016;44.
  • 70. Monroy MC, Bustamante DM, Rodas AG, Enriquez ME, Rosales RG. Habitats, dispersion and invasion of sylvatic Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in Peten, Guatemala. J Med Entomol 2003;40(6):800—6.
  • 71. Pennington PM, Messenger LA, Reina J, Juarez JG, Lawrence GG, Dotson EM, et al. The Chagas disease domestic transmission cycle in Guatemala: parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley. Acta Trop 2015;151:80—7.
  • 72. Monroy C, Castro X, Bustamante DM, Pineda SS, Rodas A, Moguel B, et al. An ecosystem approach for the prevention of Chagas disease in rural Guatemala. In: Charron DF, editor. Ecohealth research in practice: innovative applications of an ecosystem approach to health, insight and innovation in international development. Dordrecht: Springer; 2012.
  • 73. Sandoval CM, Gutierrez R, Luna S, Amaya M, Esteban L, Ariza H, et al. High density of Rhodnius prolixus in a rural house in Colombia. Trans R Soc Trop Med Hyg 2000;94(4):372—3.
  • 74. Lent H, Wygodzinsky P. Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 1979;163:123—520.
  • 75. Pavan MG, Monteiro FA. A multiplex PCR assay that separates Rhodnius prolixus from members of the Rhodnius robustus cryptic species complex (Hemiptera: Reduviidae). Trop Med Int Health 2007;12(6):751—8.
  • 76. Dujardin JP, Munoz M, Chavez T, Ponce C, Moreno J, Schofield CJ, et al. The origin of Rhodnius prolixus in Central America. Med Vet Entomol 1998;12:113 —15.
  • 77. Pavan MG, Mesquita RD, Lawrence GG, Lazoski C, Dotson EM, Abubucker S, et al. A nuclear single-nucleotide polymorphism (SNP) potentially useful for the separation of Rhodnius prolixus from members of the Rhodnius robustus cryptic species complex (Hemiptera: Reduviidae). Infect Genet Evol 2013;14:426—33.
  • 78. Lopez DC, Jaramillo C, Guhl F. Population structure and genetic variability of Rhodnius prolikus (Hemiptera : Reduviidae) from different geographic areas of Colombia. Biomed Rev Inst Nacl Salud 2007;27:28—39.
  • 79. Feliciangeli MD, Campbell-Lendrum D, Martinez C, Gonzalez D, Coleman P, Davies C. Chagas disease control in Venezuela: lessons for the Andean region and beyond. Trends Parasitol 2003;19(1):44—9.
  • 80. Fitzpatrick S, Watts PC, Feliciangeli MD, Miles MA, Kemp SJ. A panel of ten microsatellite loci for the Chagas disease vector Rhodnius prolixus (Hemiptera: Reduviidae). Infect Genet Evol 2009;9(2):206—9.
  • 81. Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, et al. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 2015;112(48):14936—41.
  • 82. Fu YX. New statistical tests of neutrality for DNA samples from a population. Genetics 1996;143(1):557—70.
  • 83. Roden AE, Champagne DE, Forschler BT. Biogeography of Triatoma sanguisuga (Hemiptera: Reduviidae) on two barrier islands off the coast of Georgia, United States. J Med Entomol 2011;48(4):806—12.
  • 84. Dorn PL, Perniciaro L, Yabsley MJ, Roelfig DM, Balsamo G, Diaz J, et al. Autochthonous transmission of Trypanosoma cruzi, Louisiana. Emerg Infect Dis 2007;13(4):605—7.
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >