Desktop version

Home arrow Economics arrow American Trypanosomiasis Chagas Disease, Second Edition: One Hundred Years of Research

Source

Order Artiodactyla

Mammals from this order are rarely studied in the wild concerning their putative role played on the transmission cycle of T. cruzi. Despite that, a study conducted in the Pantanal region of Brazil observed an interesting situation represented by the feral pig (Fig. 11.7), which are domestic pigs (Sus scrofa) that returned to the wild environment in the Brazilian Pantanal: these animals were infected with the DTU TcI genotype of Trypanosoma cruzi and described as important maintenance reservoir hosts of the parasite in nature.80 In the same study, two sympatric species of wild boar (Tayassu tajacu and Tayassu pecari) were also found infected, as demonstrated by the presence of anti-T. cruzi antibodies in their serum.

Feral pig Sus scrofa from Brazilian Pantanal. Photo

Figure 11.7 Feral pig Sus scrofa from Brazilian Pantanal. Photo: Rita de Cassia Bianchi.

References

  • 1. Briones MR, Souto RP, Stolf BS, Zingales B. The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. Mol Biochem Parasitol 1999;104:219-32.
  • 2. Stothard JR, Frame IA, Miles MA. Genetic diversity and genetic exchange in Trypanosoma cruzi: dual drug-resistant “progeny” from episomal transformants. Mem Inst Oswaldo Cruz 1999;94(Suppl. 1):189-93.
  • 3. Buscaglia CA, Di Noia JM. Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease. Microbes Infect 2003;5:419-27.
  • 4. Deane MP, Lenzi HL, Jansen AM. Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis. Mem Inst Oswaldo Cruz 1984;79:513-15.
  • 5. Schofield CJ. Trypanosoma cruzi-the vector-parasite paradox. Mem Inst Oswaldo Cruz 2000;95:535-44.
  • 6. Flynn JJ, Wyss AR. Recent advances in South American mammalian paleontology. Tree 1998;13:449-54.
  • 7. Hamilton PB, Teixeira MM, Stevens JR. The evolution of Trypanosoma cruzi: the “bat seeding” hypothesis. Trends Parasitol 2012;28(4):136-41. Available from: http://dx.doi. org/10.1016/j.pt.2012.01.006.
  • 8. Lima L, Silva FM, Neves L, Attias M, Takata CS, Campaner M, et al. Evolutionary insights from bat trypanosomes: morphological, developmental and phylogenetic evidence of a new species, Trypanosoma (Schizotrypanum) erneyi sp. nov, in African bats closely related to Trypanosoma (Schizotrypanum) cruzi and allied species. Protist 2012;163:856-72.
  • 9. Lima L, Espinosa-Alvarez O, Hamilton PB, Neves L, Takata CSA, Campaner M, et al. Trypanosoma livingstonei: a new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade. Parasit Vectors 2013;6:221.
  • 10. Lima L, Espinosa-Alvarez O, Ortiz PA, Trejo-VarOn JA, Carranza JC, Pinto CM, et al. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylo- geographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop 2015;151:166-77. Available from: http://dx.doi.org/10.1016Zj.actatropica. 2015.07.015.
  • 11. Schofield CJ, Galvao C. Classification, evolution, and species groups within the Triatominae. Acta Trop. 2009;110:88-100.
  • 12. Poinar Jr GO. Triatoma dominicana sp. n. (Hemiptera: Reduviidae: Triatominae) and Trypanosoma antiquus sp. n. (Stercoraria: Trypanosomatidae): the first fossil evidence of a Triatomine-Trypanosomatid vector association. Vector Borne Zoonotic Dis 2005;5:72-81.
  • 13. Carcavallo RU, Jurberg J, Lent H. Filogenia dos triatomineos. In: Carcavallo RU, Galindez Giron I, Jurberg J, Lent H, editors. Atlas dos vetores da doenca de Chagas nas Americas, Vol III. Rio de Janeiro: Fiocruz; 1999. p. 925-80.
  • 14. Brisse S, Barnabe C, Tibayrenc M. Identification of six Trypanosoma cruzi phylogenetic lineages by random ampliyed polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 2000;30:35-44.
  • 15. Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 2012;12(2):240-53. Available from: http://dx.doi.org/10.1016Zj.meegid.2011.12.009.
  • 16. Anonymous. Recommendations from a satellite meeting. Mem Inst Oswaldo Cruz 1999;94:429-32.
  • 17. World Health Organization (WHO). Control of Chagas Disease. Tech Rep Series 1991;811. 95pp.
  • 18. Yeo M, Acosta N, Llewellyn M, Sanchez H, Adamson S, Miles GA, et al. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 2005;35:225-33.
  • 19. Jansen AM, Xavier SC, Roque AL. The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Trop 2015. pii: S0001-706X(15)30066-8. http://dx.doi.org/10.1016/j.actatropica.2015.07.018.
  • 20. Olifiers N, Gentile R, Fiszon JT. Relation between small-mammal species composition and anthropic variables in the Brazilian Atlantic Forest. Braz J Biol 2005;65:495-501.
  • 21. Austad NS. The adaptable opossum. Sci Am 1988;258(2):98-104.
  • 22. Fernandes O, Mangia RH, Lisboa CV, Pinho AP, Morel CM, Zingales B, et al. The complexity of the complexity of the sylvatic cycle of Trypanosoma cruzi in Rio de Janeiro State revealed by non-transcribed spacer of the mini exon gene. Parasitology 1999;118:161-6.
  • 23. Jansen AM, Carreira JC, Deane MP. Infection of a mammal by monogenetic insect trypanosomatids (Kinetoplastida, Trypanosomatidae). Mem Inst Oswaldo Cruz 1988;83: 271-2.
  • 24. Steindel M, Pinto CJ. Trypanosoma cruzi development in the anal glands of experimentally infected Lutreolina crassicaudata (Marsupialia, Didelphidae). Mem Inst Oswaldo Cruz 1988;83:397.
  • 25 Jansen AM, Leon LL, Machado GM, da Silva MH, Souza-Ledo SM, Deane MP. Trypanosoma cruzi in Didelphis marsupialis: an parasitological and serological follow up of the acute phase. Exp Parasitol 1991;73:249-59.
  • 26. Pinho AP, Cupolillo E, Mangia RH, Fernandes O, Jansen AM. Trypanosoma cruzi in the sylvatic environment: distinct transmission cycles involving two sympatric marsupials. Trans R Soc Trop Med Hyg 2000;94:1-6.
  • 27. PAHO — Pan-American Health Organization. Doenca de Chagas—guia para vigiiancia, prevencao, controle e manejo clinico da doenca de Chagas aguda transmitida por alimen- tos. 2009; 92pp. Available from: http://bvs.panalimentos.org/local/File/Guia_Doenca_ Chagas_2009.pdf.
  • 28. Jansen AM, Pinho APS, Lisboa CV, Cupolillo E, Mangia RH, Fernandes O. The sylvatic cycle of Trypanosoma cruzi: a still unsolved puzzle. Mem Inst Oswaldo Cruz 1999;94 (Suppl. I):203—4.
  • 29. Legey AP, Pinho AP, Xavier SCC, Leon L, Jansen AM. Humoral immune response kinetics in Philander opossum and Didelphis marsupialis infected and immunized by Trypanosoma cruzi. Mem Inst Oswaldo Cruz 1999;94:371—3.
  • 30. Roque ALR, Xavier SCC, da Rocha MG, Duarte AC, D’Andrea PS, Jansen AM. Trypanosoma cruzi transmission cycle among wild and domestic mammals in three areas of orally transmitted Chagas disease outbreaks. Am J Trop Med Hyg 2008;79: 742—9.
  • 31. Barretto MP, Ribeiro RD. ReservattSrios silvestres do Trypanosoma (Schizotrypanum) cruzi, Chagas 1909. Rev Inst Adolfo Lutz 1979;39:25—36.
  • 32. Herrera L, D’Andrea PS, Xavier SC, Mangia RH, Fernandes O, Jansen AM. Trypanosoma cruzi infection in wild mammals of the National Park ‘Serra da Capivara’ and its surroundings (Piaui, Brazil), an area endemic for Chagas disease. Trans R Soc Trop Med Hyg 2005;99:379—88.
  • 33. Marcili A, Lima L, Valente VC, Valente SA, Batista JS, Junqueira AC, et al. Comparative phylogeography of Trypanosoma cruzi TCIIc: new hosts, association with terrestrial ecotopes, and spatial clustering. Infect Genet Evol 2009;9:1265—74.
  • 34. Carreira JCA, Jansen AM, Deane MP, Lenzi H. Histopathological study of experimental and natural infections by Trypanosoma cruzi in Didelphis marsupialis. Mem Inst Oswaldo Cruz 1996;91:609—18.
  • 35. Rotureau B. Trypanosomatid (Protozoa, Kinetoplastida) parasites of sloths (Mammalia, Xenarthra). Bull Soc Pathol Exot 2006;99:171—5.
  • 36. Chagas C. Sobre um trypanosomo do tatu Tatusia novemcincta, transmitido pela Triatoma geniculata Latr. (1811): Possibilidade de ser o tatu um depositario do Trypanosoma cruzi no mundo exterior (Nota Previa. Brazil-Me'dico 1912;26:305—6.
  • 37. Acosta N, Samudio M, Lopez E, Vargas F, Yaksic N, Breniere SF, et al. Isoenzyme profiles of Trypanosoma cruzi stocks from different areas of Paraguay. Mem Inst Oswaldo Cruz 2001;96:527—33.
  • 38. Yaeger RG. The prevalence of Trypanosoma cruzi infection in armadillos collected at a site near New Orleans, Louisiana. Am J Trop Med Hyg 1988;38:323—6.
  • 39. Paige CF, Scholl DT, Truman RW. Prevalence and incidence density of Mycobacterium leprae and Trypanosoma cruzi infections within a population of wild nine-banded armadillos. Am J Trop Med Hyg 2002;67:528—32.
  • 40. Raccurt CP. Trypanosoma cruzi in French Guiana: review of accumulated data since 1940. Med Trop 1996;56:79—87.
  • 41. Orozco MM, Enriquez GF, Alvarado-Otegui JA, Cardinal MV, Schijman AG, Kitron U, et al. New sylvatic hosts of Trypanosoma cruzi and their reservoir competence in the humid Chaco of Argentina: a longitudinal study. Am J Trop Med Hyg 2013;88 (5):872—82.
  • 42. Carcavallo RU, Franca-Rodriguez ME, Salvatella R, Curto de Casas SI, Sherlock I, Galvao C, et al. Habitats e fauna relacionada. In: Carcavallo RU, Galindez Giron I, Jurberg J, Lent H, editors. Atlas dos vetores da doenca de Chagas nas Americas, Vol II. Rio de Janeiro: Fiocruz; 1998. p. 561—600.
  • 43. Bento DN, Farias LM, Godoy MF, Araujo JF. The epidemiology of Chagas’ disease in a rural area of the city of Teresina, Piaul, Brazil. Rev Soc Bras Med Trop 1992;25:51-8.
  • 44. Araujo VA, Boite MC, Cupolillo E, Jansen AM, Roque AL. Mixed infection in the anteater Tamandua tetradactyla (Mammalia: Pilosa) from Para State, Brazil: Trypanosoma cruzi, T. rangeli and Leishmania infantum. Parasitology 2013;140(4): 455-60. Available from: http://dx.doi.org/10.1017/S0031182012001886.
  • 45. Bonvicino CR, Oliveira JA, D’Andrea PS Guia dos Roedores do Brasil, com chaves para generos baseadas em caracteres externos/Rio de Janeiro: Centro Pan-Americano de Febre Aftosa—OPAS/OMS; 2008:120 p.: il. (Serie de Manuais Tecnicos, ISSN 01016970).
  • 46. Wilson DE, Reeder DM. Mammal species of the World: a taxonomic and geographic reference. 3rd ed. Baltimore, MD: Johns Hopkins University Press; 2005. p. 2142.
  • 47. Mills JN, Childs JE. Ecologic studies of rodent reservoirs: their relevance of human health. Emerg Infect Dis 1998;4:529-37.
  • 48. Herrera HM, Rademaker V, Abreu UG, D’Andrea PS, Jansen AM. Variables that modulate the spatial distribution of Trypanosoma cruzi and Trypanosoma evansi in the Brazilian Pantanal. Acta Trop 2007;102:55-62.
  • 49. Vaz VC, D’Andrea PS, Jansen AM. Effects of habitat fragmentation on wild mammal infection by Trypanosoma cruzi. Parasitology 2007;134:1785-93.
  • 50. Ramsey JM, Gutierrez-Cabrera AE, Salgado-Ramlrez L, Peterson AT, Sdnchez-Cordero V, et al. Ecological connectivity of Trypanosoma cruzi reservoirs and Triatoma pallidipennis hosts in an anthropogenic landscape with endemic Chagas disease. PLoS ONE 2012;7(9): e46013.
  • 51. Charles RA, Kjos S, Ellis AE, Barnes JC, Yabsley MJ. Southern plains woodrats (Neotoma micropus) from southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and host of a putative novel Trypanosoma species. Vector Borne Zoonotic Dis 2013;13(1):22-30.
  • 52. Orozco MM, Piccinali RV, Mora MS, Enriquez GF, Cardinal MV, Giirtler RE. The role of sigmodontine rodents as sylvatic hosts of Trypanosoma cruzi in the Argentinean Chaco. Infect Genet Evol 2014; 22:12- 22.
  • 53. Herrera CP, Licon MH, Nation CS, Jameson SB, Wesson DM. Genotype diversity of Trypanosoma cruzi in small rodents and Triatoma sanguisuga from a rural area in New Orleans, Louisiana. Parasit. Vectors 2015;8:123.
  • 54. Rademaker V, Herrera HM, Raffel TR, D’Andrea PS, Freitas TP, Abreu UG, et al. What is the role of small rodents in the transmission cycle of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida Trypanosomatidae)? A study case in the Brazilian Pantanal. Acta Trop 2009;111(2):102-7.
  • 55. Bonvicino CR, Otazu IB, D’Andrea PS. Karyologic evidence of diversification of the genus Thrichomys (Rodentia, Echimyidae). Cytogenet Genome Res 2002;97:200-4.
  • 56. Araujo CAC, Waniek PJ, Xavie SCC, Jansen AM. Genotype variation of Trypanosoma cruzi isolates from different Brazilian biomes. Exp Parasitol 2011;127:308-12.
  • 57. Herrera L, Xavier SCC, Viegas C, Martinez C, Cotias PM, Carrasco H, et al. Trypanosoma cruzi in a caviomorph rodent: parasitological and pathological features of the experimental infection of Trichomys apereoides (Rodentia, Echimyidae). Exp Parasitol 2004;107:78-88.
  • 58. Roque ALR, D’Andrea PS, de Andrade GB, Jansen AM. Trypanosoma cruzi: distinct patterns of infection in the sibling caviomorph rodent species Thrichomys apereoides laurentius and Thrichomys pachyurus (Rodentia, Echimyidae). Exp Parasitol 2005;111: 37 46.
  • 59. Dias JCP, Coura JR. Comments on Carlos Chagas, 1909—Nova tripanosomiase humana: estudos sobre a morfologia e ciclo evolutivo do Schizotrypanum n. gen., n.sp., agente etiologico de nova entidade mcirbida do homem. In: Carvalheiro JR, Azevedo N, Araujo-Jorge TC, Lannes-Vieira J, Soeiro MNC, Klein L, editors. Classicos em doenca de Chagas—historia e perspectivas no centenario da descoberta. Rio de Janeiro: Fiocruz; 2009. p. 51 — 130.
  • 60. Lisboa CV, Mangia RH, Rubiao E, de Lima NR, das Chagas Xavier SC, Picinatti A, et al. Trypanosoma cruzi transmission in a captive primate unit, Rio de Janeiro, Brazil. Acta Trop 2004;90:97—106.
  • 61. Lisboa CV, Monteiro RV, Martins AF, Xavier SC, Lima VD, Jansen AM. Infection with Trypanosoma cruzi TcII and Tcl in free-ranging population of lion tamarins (Leontopithecus spp): an 11-year follow-up. Mem Inst Oswaldo Cruz 2015;110(3): 394—402.
  • 62. Monteiro RV, Dietz JM, Raboy B, Beck B, De Vleeschouwer K, Baker A, et al. Parasite community interactions: Trypanosoma cruzi and intestinal helminths infecting wild golden lion tamarins Leontopithecus rosalia and golden-headed lion tamarins L. chry- somelas (Callitrichidae, L., 1766). Parasitol Res 2007;101:1689—98.
  • 63. Lisboa CV, Dietz J, Baker AJ, Russel NN, Jansen AM. Trypanosoma cruzi infection in Leontopithecus rosalia at the Reserva Biologica de Poco das Antas, Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 2000;95:445—52.
  • 64. Marcili A, Valente VC, Valente SA, Junqueira AC, da Silva FM, Pinto AY. Trypanosoma cruzi in Brazilian Amazonia: Lineages TCI and TCIIa in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. Int J Parasitol 2009;39:615—23.
  • 65. Monteiro RV, Baldez J, Dietz J, Baker A, Lisboa CV, Jansen AM. Clinical, biochemical, and electrocardiographic aspects of Trypanosoma cruzi infection in free-ranging golden lion tamarins (Leontopithecus rosalia). J Med Primatol 2006;35:48—55.
  • 66. Rocha FL, Roque AL, de Lima JS, Cheida CC, Lemos FG, de Azevedo FC, et al. Trypanosoma cruzi infection in neotropical wild carnivores (Mammalia: Carnivora): at the top of the T. cruzi transmission chain. PLoS ONE 2013;4;8(7):e67463. Available from: http://dx.doi.org/10.1371/journal.pone.0067463.
  • 67. Herrera HM, Rocha FL, Lisboa CV, Rademaker V, Mourao GM, Jansen AM. Food web connections and the transmission cycles of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida, Trypanosomatidae) in the Pantanal Region, Brazil. Trans R Soc Trop Med Hyg 2011;105(7):380—7. Available from: http://dx.doi.org/10.1016/j.trstmh. 2011.04.008.
  • 68. Herrera HM, Lisboa CV, Pinho AP, Olifiers N, Bianchi RC, Rocha FL, et al. The coati (Nasua nasua, Carnivora, Procyonidae) as a reservoir host for the main lineages of Trypanosoma cruzi in the Pantanal region, Brazil. Trans R Soc Trop Med Hyg 2008;102:1133—9.
  • 69. Pietrokovsky SM, Schweigmann NJ, Riarte A, Alberti A, Conti O, Montoya S, et al. The skunk Conepatus chinga as new host of Trypanosoma cruzi in Argentina. J Parasitol 1991;77:643—5.
  • 70. Rosypal AC, Tidwell RR, Lindsay DS. Prevalence of antibodies to Leishmania infantum and Trypanosoma cruzi in wild canids from South Carolina. J Parasitol 2007;93:955—7.
  • 71. Olifiers N, Jansen AM, Herrera HM, Bianchi Rde C, D’Andrea PS, Mourao Gde M, et al. Co-infection and wild animal health: effects of trypanosomatids and gastrointestinal parasites on coatis of the Brazilian pantanal. PLoS ONE 2015;14;10(12):e0143997. Available from: http://dx.doi.org/10.1371/journal.pone.0143997.
  • 72. Jones G, Teeling EC. The evolution of echolocation in bats. Trends Ecol Evol 2006;21: 149-56.
  • 73. Bishop KL. The evolution of flight in bats: narrowing the field of plausible hypotheses. Q Rev Biol 2008;83:153-69.
  • 74. Bisson IA, Safi K, Holland LA. Evidence for repeated independent evolution of migration in the largest family of bats. PLoS ONE. 2009;21:e7504.
  • 75. Pinto CM, Ocana-Mayorga S, Tapia EE, Lobos SE, Zurita AP, Aguirre-Villacis F, et al. Bats, Trypanosomes, and Triatomines in Ecuador: new insights into the diversity, transmission, and origins of Trypanosoma cruzi and Chagas disease. PLoS ONE 2015;10(10): e0139999.
  • 76. Thomas ME, Rasweiler JJ, D’Alessandro A. Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma rangeli between triatomine bugs or mice and captive neotropical bats. Mem Inst Oswaldo Cruz 2007;102:559-65.
  • 77. Gardner AL. Feeding habitats. In: Baker, RJ, Jones, JK, Carter, DC, editors. Biology of bats of the New World family Phillostomatidae, Part III, Spec. Publ. Mus. Texas Tech. Univ, vol. 13. 1977;13:293-350.
  • 78. Anez N, Crisante G, Soriano PJ. Trypanosoma cruzi congenital transmission in wild bats. Acta Trop 2009;109:78-80.
  • 79. Jansen AM, Madeira FB, Deane MP. Trypanosoma cruzi infection in the opossum Didelphis marsupialis: absence of neonatal transmission and protection by maternal antibodies in experimental infections. Mem Inst Oswaldo Cruz 1994;89:41-5.
  • 80. Herrera HM, Abreu UG, Keuroghlian A, Freitas TP, Jansen AM. The role played by sympatric collared peccary (Tayassu tajacu), white-lipped peccary (Tayassu pecari), and feral pig (Sus scrofa) as maintenance hosts for Trypanosoma evansi and Trypanosoma cruzi in a sylvatic area of Brazil. Parasitol Res 2008;103:619-24.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >

Related topics