Desktop version

Home arrow Economics arrow American Trypanosomiasis Chagas Disease, Second Edition: One Hundred Years of Research

Source

References

  • 1. Noireau F, Diosque P, Jansen AM. Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet Res 2009;40:26.
  • 2. Jansen AM, Xavier SC, Roque AL. The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Trop 2015. pii: S0001-706X(15)30066-8. Available from: http://dx.doi.org/10.1016/). actatropica.2015.07.018.
  • 3. Deane MP, Lenzi HL, Jansen AM. Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis. Mem Inst Oswaldo Cruz 1984;79:513-15.
  • 4. Steindel M, Pinto CJ. Trypanosoma cruzi development in the anal glands of experimentally infected Lutreolina crassicaudata (Marsupialia, Didelphidae). Mem Inst Oswaldo Cruz 1988;83:397.
  • 5. Herrera L, Martinez C, Carrasco H, Jansen AM, Urdaneta-Morales S. Cornea as a tissue reservoir of Trypanosoma cruzi. Parasitol Res 2007;100:1395-9.
  • 6. Nouvellet P, Dumonteil E, Gourbire S. The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease. PLoS Negl Trop Dis 2013;7(11):e2505.
  • 7. Yoshida N. Trypanosoma cruzi infection by oral route: how the interplay between parasite and host components modulates infectivity. Parasitol Int 2008;57(2):105-9.
  • 8. Yoshida N. Molecular mechanisms of Trypanosoma cruzi infection by oral route. Mem Inst Oswaldo Cruz 2009;104(Suppl. 1):101-7.
  • 9. Kribs-Zaleta CM. Alternative transmission modes for Trypanosoma cruzi. Math Biosci Eng 2010;7(3):657-73. Available from: http://dx.doi.org/10.3934/mbe.2010.7.657.
  • 10. Carlier Y, Truyens C. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses. Acta Trop 2015;151:103-15. Available from: http://dx.doi.org/10.1016/j.actatropica.2015.07.016.
  • 11. Dias JCP. Elimination of Chagas disease transmission: perspectives. Mem Inst Oswaldo Cruz 2009;104(Suppl. 1):41-5.
  • 12. Barretto MP, Ribeiro RD. Reservatcirios silvestres do Trypanosoma (Schizotrypanum) cruzi, Chagas 1909. Rev Inst Adolfo Lutz 1979;39:25-36.
  • 13. Giirtler RE, Cardinal MV. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop 2015;151:32-50. Available from: http://dx.doi.org/10.1016/j.actatropica.2015.05.029.
  • 14. Mortara RA, Andreoli WK, Fernandes MC, da Silva CV, Fernandes AB, L’Abbate C, et al. Host cell actin remodeling in response to Trypanosoma cruzi: trypomastigote versus amastigote entry. Subcell Biochem 2008;47:101-9.
  • 15. Lachaud L, Marchergui-Hammami S, Chabbert E, Dereure J, Dedet JP, Bastien P. Comparison of six PCR methods using peripheral blood for detection of canine visceral leishmaniasis. J Clin Microbiol 2002;40:210-15.
  • 16. Piron M, Fisa R, Casamitjana N, Lcipez-Chejade P, Puig L, Verges M, et al. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop 2007;103:195-200.
  • 17. Castro AM, Luquetti AO, Rassi A, Rassi GG, Chiari E, Galvao LMC. Blood culture and polymerase chain reaction for the diagnosis of the chronic phase of human infection with Trypanosoma cruzi. Parasitol Res 2002;88:894-900.
  • 18. Britto CC. Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: value and limitations. Mem Inst Oswaldo Cruz 2009;104(S1):122-35.
  • 19. Ramirez JC, Cura CI, da Cruz Moreira O, Lages-Silva E, Juiz N, Velazquez E, et al. Analytical validation of quantitative real-time PCR methods for quantification of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. J Mol Diagn 2015;17(5):605-15.
  • 20. Roque ALR, Xavier SCC, da Rocha MG, Duarte AC, D’Andrea PS, Jansen AM. Trypanosoma cruzi transmission cycle among wild and domestic mammals in three areas of orally transmitted Chagas disease outbreaks. Am J Trop Med Hyg 2008;79:742-9.
  • 21. PAHO—Pan-American Health Organization. Doenca de Chagas—guia para vigilan- cia, prevencao, controle e manejo clinico da doenca de Chagas aguda transmitida por alimentos. 2009. p. 92. Available in: http://bvs.panalimentos.org/local/File/ Guia_Doenca_Chagas_2009.pdf.
  • 22. Ashford RW. What it takes to be a reservoir host. Bel J Zool 1997;127:85-90.
  • 23. Desbiez ALJ, Kluyber D. The role of giant armadillos (Priodontes maximus) as physical ecosystem engineers. Biotropica 2013;45(5):537-40.
  • 24. Cassia-Pires R, Boite MC, D’Andrea PS, Herrera HM, Cupolillo E, Jansen AM, et al. Distinct Leishmania species infecting wild caviomorph rodents (Rodentia: Hystricognathi) from Brazil. PLoS Negl Trop Dis 2014;11;8(12):e3389. Available from: http://dx.doi.org/ 10.1371/journal.pntd.0003389.
  • 25. de Lima JS, Rocha FL, Alves FM, Lorosa ES, Jansen AM, de Miranda Mourao G. Infestation of arboreal nests of coatis by triatomine species, vectors of Trypanosoma cruzi, in a large Neotropical wetland. J Vector Ecol 2015;40(2):379-85.
  • 26. Herrera HM, Rocha FL, Lisboa CV, Rademaker V, Mourao GM, Jansen AM. Food web connections and the transmission cycles of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida, Trypanosomatidae) in the Pantanal Region, Brazil. Trans R Soc Trop Med Hyg 2011;105(7):380-7. Available from: http://dx.doi.org/10.1016Zj. trstmh.2011.04.008.
  • 27. Barnabe C, Mobarec HI, Jurado MR, Cortez JA, Breniere SF. Reconsideration of the seven discrete typing units within the species Trypanosoma cruzi, a new proposal of three reliable mitochondrial clades. Infect Genet Evol 2016;39:176-86.
  • 28. Shofield CJ, Janin J, Salvatella R. The future of Chagas disease control. Trends Parasitol 2006;22:583-8.
  • 29. Dias JCP. Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusional Chagas disease. Historical aspects, present situation, and perspectives. Mem Inst Oswaldo Cruz 2007;102:11-18.
  • 30. Coura JR, Barrett TV, Naranjo MA. Human populations attacked by wild Triatominae in the Amazonas: a new form of transmission of Chagas disease? Rev Soc Bras Med Trop 1994;27(4):251-4.
  • 31. Coura JR, Junqueira AC, Fernandes O, Valente SA, Miles MA. Emerging Chagas disease in Amazonian Brazil. Trends Parasitol 2002;4:171-6.
  • 32. Coura JR, Vidas PA, Junqueira AC. Ecoepidemiology, short history and control of Chagas disease in the endemic countries and the new challenge for non-endemic countries. Mem Inst Oswaldo Cruz 2014;109(7):856-62.
  • 33. Xavier SCC, Roque ALR, Bilac D, de Araujo VAL, Neto SFC, Lorosa ES, et al. Distantiae transmission of Trypanosoma cruzi: a new epidemiological feature of acute Chagas disease in Brazil. PLoS Negl Trop Dis 2014;8(5):e2878. Available from: http:// dx.doi.org/10.1371/journal.pntd.0002878.
  • 34. Ostfeld RS, Keesing F. Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 2000;14:722-8.
  • 35. Chaves LF, Hernandez MJ. Mathematical modeling of American cutaneous leishmaniasis: incidental hosts and threshold conditions for infection persistence. Acta Trop 2004;92:245-52.
  • 36. Dobson A, Cattadori I, Holt RD, Ostfeld RS, Keesing F, Krichbaum K, et al. Sacred cows and sympathetic squirrels: the importance of biological diversity to human health. PLoS Med 2006;3:e231.
  • 37. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 2006;4:e82.
  • 38. Vaz VC, D’Andrea PS, Jansen AM. Effects of habitat fragmentation on wild mammal infection by Trypanosoma cruzi. Parasitology 2007;134:1785-93.
  • 39. Xavier SC, Roque AL, Lima Vdos S, Monteiro KJ, Otaviano JC, et al. Lower richness of small wild mammal species and Chagas disease risk. PLoS Negl Trop Dis 2012;6(5): e1647. Available from: http://dx.doi.org/10.1371/journal.pntd.0001647.
  • 40. Gurtler RE, Cecere MC, Lauricella MA, Cardinal MV, Kitron U, Cohen JE. Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitol 2007;134:69-82.
  • 41. Crisante G, Rojas A, Teixeira MM, Anez N. Infected dogs as a risk factor in the transmission of human Trypanosoma cruzi infection in western Venezuela. Acta Trop 2006;98:247-54.
  • 42. Chapman MD, Baggaley RC, Godfrey-Faussett PF, Malpas TJ, White G, Canese J, et al. Trypanosoma cruzi from the Paraguay Chaco: isoenzyme profiles of strains isolated at Makthlawaiya. J Protozool 1984;31:482-6.
  • 43. Cardinal MV, Lauricella MA, Ceballos LA, Lanati L, Marcet PL, Levin MJ, et al. Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol 2008;38:1533-43.
  • 44. Monje-Rumi MM, Brandan CP, Ragone PG, Tomasini N, Lauthier JJ, Alberti D’Amato AM, et al. Trypanosoma cruzi diversity in the Gran Chaco: mixed infections and differential host distribution of TcV and TcVI. Infect Genet Evol 2015;29:53-9.
  • 45. Ramirez JD, Turriago B, Tapia-Calle G, Guhl F. Understanding the role of dogs (Canis lupus familiaris) in the transmission dynamics of Trypanosoma cruzi genotypes in Colombia. Vet Parasitol 2013;196:216-19.
  • 46. Marcili A, Valente VC, Valente SA, Junqueira AC, da Silva FM, Pinto AY. Trypanosoma cruzi in Brazilian Amazonia: Lineages TCI and TCIIa in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. Int J Parasitol 2009;39:615-23.
  • 47. Lima VS, Xavier SCC, Maldonado IFR, Roque ALR, Vicente ACP, Jansen AM. Expanding the knowledge of the geographic distribution of Trypanosoma cruzi TcII and TcV/TcVI genotypes in the Brazilian Amazon. PLoS One 2014;9(12):e116137. Available from: http://dx.doi.org/10.1371/journal.pone.0116137.
  • 48. Kjos SA, Snowden KF, Craig TM, Lewis B, Ronald N, Olson JK. Distribution and characterization of canine Chagas disease in Texas. Vet Parasitol 2008;15:249-56.
  • 49. Roque ALR, Jansen AM. Importancia dos animais domesticos sentinelas na identifica- cao de areas de risco de emergeincia de doenca de Chagas. Rev Soc Bras Med Trop 2008;41(Sup. III):191-3.
  • 50. Andrade SG, Campos RF, Sobral KS, Magalhaes JB, Guedes RS, Guerreiro ML. Reinfections with strains of Trypanosoma cruzi of different biodemes as a factor of aggravation of myocarditis and myositis in mice. Rev Soc Bras Med Trop 2006;39(1):1-8.
  • 51. Lauricella MA, Riarte A, Lazzari JO, Barousse AP, Segura EL. Chagas’ disease in dogs experimentally infected with Trypanosoma cruzi. Medicina (B Aires) 1986;46 (2):195-200.
  • 52. Machado EM, Fernandes AJ, Murta SM, Vitor RW, Camilo DJ Jr, Pinheiro SW, et al. A study of experimental reinfection by Trypanosoma cruzi in dogs. Am J Trop Med Hyg 2001;65:958-65.
  • 53. Roque ALR, Xavier SCC, Gerhardt M, Silva MFO, Lima VS, D’Andrea PS, et al. Trypanosoma cruzi among wild and domestic mammals in different areas of the Abaetetuba municipality (Parti State, Brazil), an endemic Chagas disease transmission area. Vet Parasitol 2013;193:71-7.
  • 54. Enriquez GF, Cardinal MV, Orozco MM, Schijman AG, Gurtler RE. Detection of Trypanosoma cruzi infection in naturally-infected dogs and cats using serological, parasitological and molecular methods. Acta Trop 2013;126(3):211-17.
  • 55. Rimoldi A, Tome; Alves R, Ambrasio DL, Fernandes MZ, Martinez I, De Araujo RF, et al. Morphological, biological and molecular characterization of three strains of Trypanosoma cruzi Chagas, 1909 (Kinetoplastida, Trypanosomatidae) isolated from Triatoma sordida (Stal) 1859 (Hemiptera, Reduviidae) and a domestic cat. Parasitology 2012;139(1):37-44.
  • 56. Eloy LJ, Lucheis SB. Hemoculture and polymerase chain reaction using primers TCZ1/ TCZ2 for the diagnosis of canine and feline trypanosomiasis. ISRN Vet Sci 2012;419378.
  • 57. Valente VC, Valente SA, Noireau F, Carrasco HJ, Miles MA. Chagas disease in Amazon basin: association of Panstrongylus geniculatus (Hemiptera: Reduviidae) with domestic pigs. J Med Entomol 1998;35:99-103.
  • 58. Salazar-Schettino PM, Bucio MI, Cabrera M, Bautista J. First case of natural infection in pigs. Review of Trypanosoma cruzi reservoirs in Mexico. Mem Inst Oswaldo Cruz 1997;92:499-502.
  • 59. Herrera L, D’Andrea PS, Xavier SC, Mangia RH, Fernandes O, Jansen AM. Trypanosoma cruzi infection in wild mammals of the National Park ‘Serra da Capivara’ and its surroundings (Piaui, Brazil), an area endemic for Chagas disease. Trans R Soc Trop Med Hyg 2005;99:379-88.
  • 60. Rozas M, Botto-Mahan C, Coronado X, Ortiz S, Cattan PE, Solari A. Coexistence of Trypanosoma cruzi genotypes in wild and peridomestic mammals in Chile. Am J Trop Med Hyg 2007;77:647-53.
  • 61. Fernandes AJ, Vitor RW, Dias JC. Parasitologic and serologic evaluation of caprines experimentally inoculated with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 1994;36:11-17.
  • 62. Kierszenbaum F, Gottilieb CA, Budzko DB. Antibody-independent, natural resistance of birds to Trypanosoma cruzi infection. J Parasitol 1981;67:656-60.
  • 63. Kollien AH, Schaub GA. The development of Trypanosoma cruzi in triatominae. Parasitol Today 2000;16:381-7.
  • 64. Herrera HM, Rademaker V, Abreu UG, D’Andrea PS, Jansen AM. Variables that modulate the spatial distribution of Trypanosoma cruzi and Trypanosoma evansi in the Brazilian Pantanal. Acta Trop 2007;102:55-62.
  • 65. Estrada-Franco JG, Bhatia V, Az-Albiter H, Ochoa-Garcia L, Barbosa A, Vazquez- Chagoyan JC, et al. Human Trypanosoma cruzi infection and seropositivity in dogs, Mexico. Emerg Infect Dis 2006;12:624-30.
  • 66. Shadomy SV, Waring SC, Martins-Filho OA, Oliveira RC, Chappell CL. Combined use of enzyme-linked immunosorbent assay and flow cytometry to detect antibodies to Trypanosoma cruzi in domestic canines in Texas. Clin Diagn Lab Immunol 2004;11:313-19.
  • 67. Martinez-Perez A, Poveda C, Ramirez JD, Norman F, Girones N, Guhl F, et al. Prevalence of Trypanosoma cruzi’s discrete typing units in a cohort of Latin American migrants in Spain. Acta Trop 2016;157:145-50.
  • 68. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 2009;139:1268-78.
  • 69. Metenou S, Dembele B, Konate S, Dolo H, Coulibaly YI, Diallo AA, et al. Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. J Immunol 2011;186:4725-33.
  • 70. Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, et al. Species interaction in a parasite community drive infection risk in a wildlife population. Science 2010;330:243-6.
  • 71. Araujo CA, Waniek PJ, Jansen AM. TcI/TcII co-infection can enhance Trypanosoma cruzi growth in Rhodnius prolixus. Parasit Vectors 2014;7:94. Available from: http://dx. doi.org/10.1186/1756-3305-7-94.
  • 72. Ragone PG, Prez Brandn C, Monje Rumi M, Tomasini N, Lauthier JJ, Cimino RO, et al. Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco region. PLoS One 2015;10(3):e0119866.
  • 73. Machin A, Telleria J, Brizard JP, Demettre E, Sveno M, Ayala F, et al. Trypanosoma cruzi: gene expression surveyed by proteomic analysis reveals interaction between different genotypes in mixed in vitro cultures. PLoS One 2014;9(4):e95442.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >