Desktop version

Home arrow Economics arrow American Trypanosomiasis Chagas Disease, Second Edition: One Hundred Years of Research

Source

Acknowledgments

The author thanks several colleagues who have worked in his laboratory over the last 30 years and contributed with their work and enthusiasm to the progress of studies related to the cell biology of T. cruzi and its interaction with host cells. Their contributions are indicated in the legends of the figures used in this review.

References

  • 1. De Souza W. An introduction to the structural organization of parasitic protozoa. Curr Pharm Des. 2008;14:822-38.
  • 2. De Souza W. Growth and transformation of Trypanosoma cruzi. In: Briggs AP, Coburn JA, editors. Handbook of cell proliferation. Nova Science Publishers; 2009.
  • 3. Yoshida N. Molecular mechanisms of Trypanosoma cruzi infection by oral route. Mem Inst Oswaldo Cruz 2009;104:101-7.
  • 4. Coura JR. Special issue on Chagas disease. Mem Inst Oswaldo Cruz 2009;110 (3):275-6. Available from: http://dx.doi.org/10.1590/0074-0276150001.
  • 5. Crane MS, Dvorak JA. Trypanosoma cruzi: interaction with vertebrate cells. DNA synthesis and growth of intracellular amastigotes and their relationship to host cell DNA synthesis and growth. J Protozool 1979;26(4):599-604.
  • 6. De Souza W, Meyer H. An electron microscopic and cytochemical study of the cell coat of Trypanosoma cruzi in tissue cultures. Z Parasitenkd 1975;46(3):179-87.
  • 7. Elias MC, Marques-Porto R, Freymuller E, Schenckman S. Transcription rate modulation through the Trypanosoma cruzi life cycle occurs in parallel with changes in nuclear organization. Mol Biochem Parasitol 2001;112:79-90.
  • 8. Esponda P, Souto-Padron T, De Souza W. Fine structure and cytochemistry of the nucleus and the kinetoplast of epimastigotes of Trypanosoma cruzi. J Protozool 1983;30(1):105-10.
  • 9. Shapiro TA, Englund PT. The structure and replication of kinetoplast DNA. Ann Rev Microbiol 1995;49:117-43.
  • 10. Fidalgo LM, Gille L. Mitochondria and trypanosomatids: targets and drugs. Pharm Res 2011;28(11):2758-70.
  • 11. Povelones ML. Beyond replication: division and segregation of mitochondrial DNA in kinetoplastids. Mol Biochem Parasitol 2014;196:53-60.
  • 12. Souto-Padron T, De Souza W, Heuser JE. Quick-freeze, deep-etch rotary replication of Trypanosoma cruzi and Herpetomonas megaseliae. J Cell Sci 1984;69:167-8.
  • 13. Ogbadoiyi EO, Robinson DR, Gull K. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 2003;14:1769-79.
  • 14. Opperdoes FR. Compartmentalization of carbohydrate metabolism in trypanosomes. Ann Rev Microbiol 1987;41:127-51.
  • 15. Opperdoes FR, Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei. FEBS Lett 1977;80:360-4.
  • 16. Haanstra JR, Bakker BM, Michels PA. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei. Mol Biochem Parasitol 2014;198(1):18-28.
  • 17. Opperdoes FR, Cotton D. Involvement of the glycosome of Trypanosoma brucei in carbon dioxide fixation. FEBS Lett 1982;143:60-4.
  • 18. Haanstra JR, Gonzdlez-Marcano EB, GualdriSn-LiSpez M, Michels PA. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 2016; 1863(5):1038 -48.
  • 19. Docampo R, De Souza W, Miranda K, Roheloff P, Moreno S. Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol 2005;3:251-61.
  • 20. Miranda K, Benchimol M, Docampo R, De Souza W. The fine structure of acidocalci- somes in Trypanosoma cruzi. Parasitol Res 2000;86:373-84.
  • 21. Li FJ, He CY. Acidocalcisome is required for autophagy in Trypanosoma brucei. Autophagy 2014;10(11):1978-88.
  • 22. Furuya T, Okura M, Ruiz FA, Scott DA, Docampo R. TcSCA complements yeast mutants defective in Ca21 pumps and encodes a Ca21-ATPase that localizes to the endoplasmic reticulum of Trypanosoma cruzi. J Biol Chem 2001;276(35):32437-45.
  • 23. Niyogi S, Jimenez V, Girard-Dias W, de Souza W, Miranda K, Docampo R. Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of Trypanosoma cruzi. J Cell Sci 2015;128:2363-73.
  • 24. Linder JC, Staehelin LA. Plasma membrane specialization in a trypanosomatid flagellate. J Ultrastruct Res 1977;60:246-62.
  • 25. Montalvetti A, Rohloff P, Docampo R. A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 2004;279:3867-82.
  • 26. Rohloff P, Docampo R. A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol 2008;118:17-24.
  • 27. Rohloff P, Montalvetti A, Docampo R. Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem. 2004;279(50):52270-81.
  • 28. Schoijet AC, Miranda K, Medeiros LC, de Souza W, Flawia MM, Torres HN, et al. Defining the role of a FYVE domain in the localization and activity of a cAMP phosphodiesterase implicated in osmoregulation in Trypanosoma cruzi. Mol Microbiol 2011;79(1):50-62.
  • 29. Ulrich PN, Jimenez V, Park M, Martins VP, Atwood III J, Moles K, et al. Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS ONE 2011;6(3):e18013.
  • 30. Docampo R, Jimenez V, Lander N, Li ZH, Niyogi S. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. Int Rev Cell Mol Biol 2013;305:69-113.
  • 31. Harris E, Yoshida K, Cardelli J, Bush J. Rab11-like GTPase associates with and regulates the structure and function of the contractilevacuole system in dictyostelium. J Cell Sci 2001;114(Pt 16):3035-45.
  • 32. Girard-Dias W, Alcantara CL, Cunha-e-Silva N, de Souza W, Miranda K. On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem Cell Biol 2012;138(6):821-31.
  • 33. Pimenta PF, De Souza W. Fine structure and cytochemistry of the endoplasmic reticulum and its association with the plasma membrane of Leishmania mexicana amazonen- sis. J Submicroscop Cytol 1985;17:413-19.
  • 34. Alcantara CL, Vidal JC, de Souza W, Cunha e Silva NL. The three-dimensional structure of the cytostome-cytopharinx complex of Trypanosoma cruzi epimastigotes. J. Cell Sci 2014;127:2227-37.
  • 35. Correa JR, Atella GC, Menna-Barreto RS, Soares MJ. Clathrin in Trypanosoma cruzi: in silico gene identification, isolation, and localization of protein expression sites. J Euk Microbiol 2007;54:297-302.
  • 36. Correa Correa JR, Atella GC, Batista MM, Soares M. Transferrin uptake in Trypanosoma cruzi is impaired by interference on cytostome-associated cytoskeleton elements and stability of membrane cholesterol, but not by obstruction of clathrin- dependent endocytosis. Exp Parasitol 2008;119:58-66.
  • 37. De Melo LD, Sant’Anna C, Reis SA, Lourenijo D, De Souza W, Lopes UG, et al. Evolutionary conservation of actin-binding proteins in Trypanosoma cruzi and unusual subcellular localization of the actin homologue. Parasitology 2008;135:955-65.
  • 38. Cevallos AM, Segura-Kato YX, Merchant-Larios H, Manning-Cela R, Alberto Hernandez-Osorio L, Mtirquez-Duerias C, et al. Trypanosoma cruzi: multiple actin isovariants are observed along different developmental stages. Exp Parasitol. 2010;127 (1):249-59.
  • 39. Landfear SM, Tran KD, Sanchez MA. Flagellar membrane proteins in kinetoplastid parasites. IUBMB Life 2015;67:668-76.
  • 40. Farina M, Attias M, Souto-Padron T, De Souza W. Further studies on the organization of the paraxial rod of trypanosomatids. J Protozool 1986;33:552-7.
  • 41. Bastin P, Gull K. Assembly and function of complex flagellar structures illustrated by the paraflagellar rod of trypanosomes. Protist 1999;150:113-23.
  • 42. Lander N, Li ZH, Niyogi S, Docampo R. CRISPR/Cas9-induced disruption of parafla- gellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio 2015;6(4):e01012 21.
  • 43. Rocha GM, Miranda K, Weissmuller G, Bisch PM, De Souza W. Ultrastructure of Trypanosoma cruzi revisited by atomic force microscopy. Mic Res Tech 2007;71:133-9.
  • 44. Florimond C, Sahin A, Vidiiaseris K, Dong G, Landrein N, Dacheux D, et al. BILBO1 is a scaffold protein of the flagellar pocket collar in the pathogen Trypanosoma brucei. PLoS Pathol 2015. Available from: http://dx.doi.org/10.1371/journal.ppat.1004654.
  • 45. Field MC, Carrington M. The trypanosome flagellar pocket. Nat Rev Microbiol 2009;7:775-86.
  • 46. Araripe JR, Ramos FP, Cunha e Silva NL, Urmenyi TP, Silva R, Leite Fontes CF, et al. Characterization of a RAB5 homologue in Trypanosoma cruzi. Biochem Biophys Res Commun 2005;329:638-45.
  • 47. Bayer-Santos E, Cunha-e-Silva NL, Yoshida N, Franco da Silveira J. Expression and cellular trafficking of GP82 and GP90 glycoproteins during Trypanosoma cruzi metacyclogenesis. Parasit Vectors 2013;6:127.
  • 48. Neves RF, Fernandes AC, Meyer-Fernandes JR, Souto-Padron T. Trypanosoma cruzi- secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res 2014;113(8):2961-72.
  • 49. Pereira MG, Visbal G, Salgado LT, Vidal JC, Godinho JLP, De Cicco NNT, et al. Trypanosoma cruzi epimastigotes are able to manage internal cholesterol levels under nutritional lipid stress conditions. PLoS ONE 2015;10(6).e0128949. Available from: http://dx.doi.org/10.1371/journal.pone.0128949.
  • 50. Nogueira PM, Ribeiro K, Silveira AC, Campos JH, Martins-Filho OA, Bela SR, et al. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses. J Extracell Vesicles 2015;4:28734.
  • 51. Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 1969;5:163-93.
  • 52. Vieira M, Rohloff P, Luo S, Cunha-e-Silva NL, de Souza W, Docampo R. Role for a P- type H 1 -ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J 2005;392:467-74.
  • 53. Soares MJ, Souto-Padron T, De Souza W. Identification of a large pre-lysosomal compartment in the pathogenic protozoon Trypanosoma cruzi. J Cell Sci 1992;102:157-67.
  • 54. Sant’Anna C, Parussini F, Lourenco D, de Souza W, Cazzulo JJ, Cunha-E-Silva NL. All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 2008;130:1187-98.
  • 55. Seto E, Onizuka Y, Nakajima-Shimada J. Host cytoplasmic processing bodies assembled by Trypanosoma cruzi during infection exert anti-parasitic activity. Parasitol Int 2015;64(6):540-6.
  • 56. Martinez-Palomo A, De Souza W, Gonzales-Robles A. Topographical differences in the distribution of surface coat components and intramembranous particles. A cytochemical and freeze-fracture study in culture forms of Trypanosoma cruzi. J Cell Biol 1976;69:507-13.
  • 57. De Souza W, Martinez-Palomo A, Gonzdles-Robles A. The cell surface of Trypanosoma cruzi: cytochemistry and freeze-fracture. J Cell Sci 1978;33:285-99.
  • 58. Rocha GM, Brandao BA, Mortara RA, Attias M, De Souza W, Carvalho TM. The flagellar attachment zone of Trypanosoma cruzi epimastigote forms. J Struct Biol 2006;154:89-99.
  • 59. Souto-Padron T, De Souza W. Cytochemical analysis at the fine-structural level of try- panosomatids stained with phosphotungstic acid. J Protozool 1979;26:551-7.
  • 60. Weatherly DB, Boehlke C, Tarleton RL. Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 2009;10:255.
  • 61. Souto-Padron T, Campetella OE, Cazzulo JJ, de Souza W. Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction. J Cell Sci 1990;96:485-90.
  • 62. Dorta ML, Ferreira AT, Oshiro ME, Yoshida N. Ca21 signal induced by Trypanosoma cruzi metacyclic trypomastigote surface molecules implicated in mammalian cell invasion. Mol Biochem Parasitol 1995;73(1-2):285-9.
  • 63. Yoshida N. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. Ann Acad Bras Cienc 2006;78:87-111.
  • 64. Villalta F, Kierszenbaum F. Host cell invasion by Trypanosoma cruzi: role of cell surface galactose residues. Biochem Biophys Res Commun 1984;119:228-35.
  • 65. Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glyco- conjugates of Trypanosoma cruzi. Infect Immun 1989;57:1663-7.
  • 66. Di Noia JM, Sanchez DO, Frasch AC. The protozoan Trypanosoma cruzi has a family of genes resembling the mucin genes of mammalian cells. J Biol Chem 1995;270 (41):24146-9.
  • 67. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 2006;4:229-36.
  • 68. Abuin G, Colli W, de Souza W, Alves MJ. A surface antigen of Trypanosoma cruzi involved in cell invasion (Tc-85) is heterogeneous in expression and molecular constitution. Mol Biochem Parasitol 1989;35:229-37.
  • 69. Katzin AM, Colli W. Lectin receptors in Trypanosoma cruzi. An N-acetyl-D-glucos- amine-containing surface glycoprotein specific for the trypomastigote stage. Biochim Biophys Acta 1983;727:403-11.
  • 70. Giordano R, Chammas R, Veiga SS, Colli W, Alves MJ. Trypanosoma cruzi binds to laminin in a carbohydrate-independent way. Braz J Med Biol Res 1994;27:2315-18.
  • 71. Andrews NW, Katzin AM, Colli W. Mapping of surface glycoproteins of Trypanosoma cruzi by two-dimensional electrophoresis. A correlation with the cell invasion capacity. Eur J Biochem 1984;140:599-604.
  • 72. Giordano R, Fouts DL, Tewari D, Colli W, Manning JE, Alves MJ. Cloning of a surface membrane glycoprotein specific for the infective form of Trypanosoma cruzi having adhesive properties to laminin. J Biol Chem 1999;274:3461-8.
  • 73. Ouaissi MA, Cornette J, Afchain D, Capron A, Gras-Masse H, Tartar A. Trypanosoma cruzi infection inhibited by peptides modeled from a fibronectin cell attachment domain. Science 1986;234:603-7.
  • 74. Teixeira MM, Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol 1986;18:271-82.
  • 75. Favoreto S, Dorta ML, Yoshida N. Trypanosoma cruzi 175-kDa protein tyrosine phosphorylation is associated with host cell invasion; 1998.
  • 76. Yoshida N, Cortez M. Trypanosoma cruzi: parasite and host cell signaling during the invasion process. Subcell Biochem 2008;47:82-91.
  • 77. Cazzulo JJ, Franke MC, Martinez J, Franke de Cazullo BM. Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim Biophys Acta 1990;1037:186-91.
  • 78. Lima MF, Villalta F. Host-cell attachment by Trypanosoma cruzi: identification of an adhesion molecule. Biochem Biophys Res Commun 1988;155:256-62.
  • 79. Villalta F, Madison MN, Kleshchenko YY, Nde PN, Lima MF. Molecular analysis of early host cell infection by Trypanosoma cruzi. Front Biosci 2008;13:3714-34.
  • 80. Villalta F, Lima MF, Ruiz-Ruano A, Zhou L. Attachment of Trypanosoma cruzi to host cells: a monoclonal antibody recognizes a trypomastigote stage-specific epitope on the gp 83 required for parasite attachment. Biochem Biophys Res Commun 1992;182:6-13.
  • 81. Burleigh BA, Andrews NW. A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca 21-signaling factor for mammalian cells. J Biol Chem 1995;270:5172-80.
  • 82. Burleigh BA, Caler EV, Webster P, Andrews NW. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca21 signaling in mammalian cells. J Cell Biol 1997;136:609-20.
  • 83. Burleigh BA, Woolsey AM. Cell signalling and Trypanosoma cruzi invasion. Cell Microbiol 2002;4:701-11.
  • 84. Santana JM, Grellier P, Schrevel J, Teixeira ARA. Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV. Biochem J. 1997;325:129- 37.
  • 85. Grellier P, Vendeville S, Joyeau R, Bastos IM, Drobecq H, Frappier F, et al. Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. J Biol Chem 2001;276:47078-86.
  • 86. Magdesian MH, Giordano R, Ulrich H, Juliano MA, Juliano L, Schumacher RI, et al. Infection by Trypanosoma cruzi. Identification of a parasite ligand and its host cell receptor. J Biol Chem 2001;276:19382-9.
  • 87. Scharfstein J, Morrot A. A role for extracellular amastigotes in the immunopathology of Chagas disease. Mem Inst Oswaldo Cruz 1999;94:51-63.
  • 88. Vray B, Camby I, Vercruysse V, Mijatovic T, Bovin NV, Ricciardi-Castagnoli P, et al. Up-regulation of galectin-3 and its ligands by Trypanosoma cruzi infection with modulation of adhesion and migration of murine dendritic cells. Glycobiology 2004;14:647-57.
  • 89. Kleshchenko YY, Moody TN, Furtak VA, Ochieng J, Lima MF, Villalta F. Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infect Immun 2004;72:6717-21.
  • 90. Ochatt CM, Ulloa RM, Torres HN, Tellez-Inon MT. Characterization of the catalytic subunit of Trypanosoma cruzi cyclic AMP-dependent protein kinase. Mol Biochem Parasitol 1993;57:73-81.
  • 91. Nogueira N, Cohn Z. Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med 1976;143:1402-20.
  • 92. Claser C, Curcio M, de Mello SM, Silveira EV, Monteiro HP, Rodrigues MM. Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes. BMC Cell Biol 2008;17:68.
  • 93. Weinkauf C, Pereira-Perrin M. Trypanosoma cruzi promotes neuronal and glial cell survival through the neurotrophic receptor TrkC. Infect Immun 2009;77:1368-75.
  • 94. Hall BS, Pereira MA. Dual role for transforming growth factor beta-dependent signaling in Trypanosoma cruzi infection of mammalian cells. Infect Immun 2000;68:2077-81.
  • 95. Ming M, Ewen ME, Pereira ME. Trypanosome invasion of mammalian cells requires activation of the TGF beta signaling pathway. Cell 1995;82:287-96.
  • 96. Kipnis TL, Calich VL, da Silva WD. Active entry of bloodstream forms of Trypanosoma cruzi into macrophages. Parasitology 1979;8:89-98.
  • 97. Vieira M, Dutra JM, Carvalho TM, Cunha-e-Silva NL, Souto-Padron T, Souza W. Cellular signaling during the macrophage invasion by Trypanosoma cruzi. Histochem Cell Biol 2002;118:491-500.
  • 98. Schenkman S, Mortara RA. HeLa cells extend and internalize pseudopodia during active invasion by Trypanosoma cruzi trypomastigotes. J Cell Sci 1992;101:895-905.
  • 99. Wilkowsky SE, Wainszelbaum MJ, Isola EL. Trypanosoma cruzi: participation of intracellular Ca21 during metacyclic trypomastigote—macrophage interaction. Biochem Biophys Res Commun 1996;222:386—9.
  • 100. Garzoni LR, Masuda MO, Capella MM, Lopes AG, de Meirelles Mde N. Characterization of [Ca21] responses in primary cultures of mouse cardiomyocytes induced by Trypanosoma cruzi trypomastigotes. Mem Inst Oswaldo Cruz 2003;98:487—93.
  • 101. Rodriguez A, Rioult MG, Ora A, Andrews NW. A trypanosome-soluble factor induces IP3 formation, intracellular Ca2 1 mobilization and microfilament rearrangement in host cells. J Cell Biol 1995;129(5):1263—73.
  • 102. Cortez MR, Pinho AP, Cuervo P, Alfaro F, Solano M, Xavier SC, et al. Trypanosoma cruzi (Kinetoplastida Trypanosomatidae): ecology of the transmission cycle in the wild environment of the Andean valley of Cochabamba, Bolivia. Exp Parasitol 2006;114:305—13.
  • 103. Burleigh B. Host cell signaling and Trypanosoma cruzi invasion: do all roads leads to lysosome? Sci STKE 2005;293:36.
  • 104. de Meirelles MN, de Araujo Jorge TC, de Souza W. Interaction of Trypanosoma cruzi with macrophages in vitro: dissociation of the attachment and internalization phases by low temperature and cytochalasin B. ZParasitenkd 1982;68:7—14.
  • 105. Barbosa HS, Meirelles MN. Evidence of participation of cytoskeleton of heart muscle cells during the invasion of Trypanosoma cruzi. Cell Struct Funct 1995;20:275—84.
  • 106. Rosestolato CT, Dutra Jda M, De Souza W, de Carvalho TM. Participation of host cell actin filaments during interaction of trypomastigote forms of Trypanosoma cruzi with host cells. Cell Struct Funct 2002;27:91—8.
  • 107. Tardieux I, Nathanson MH, Andrews NW. Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca21 transients. J Exp Med 1994;179:1017—22.
  • 108. Woolsey AM, Burleigh BA. Host cell actin polymerization is required for cellular retention of Trypanosoma cruzi and early association with endosomal/lysosomal compartments. Cell Microbiol 2004;6:829—38.
  • 109. Barrias ES, Reignault LC, De Souza W, Carvalho TM. Trypanosoma cruzi uses macro- pinocytosis as an additional entry pathway into mammalian host cell. Microbes Infect 2012;14(14):1340—51.
  • 110. Ley V, Robbins ES, Nussenzweig V, Andrews NW. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J Exp Med 1990;171:401 —13.
  • 111. Barrias ES, Dutra JM, De Souza W, Carvalho TM. Participation of macrophage membrane rafts in Trypanosoma cruzi invasion process. Biochem Biophys Res Commun 2007;363:828—34.
  • 112. Fernandes MC, Cortez M, Geraldo Yoneyama KA, Straus AH, Yoshida N, Mortara RA. Novel strategy in Trypanosoma cruzi cell invasion: implication of cholesterol and host cell microdomains. Int J Parasitol 2007;37:1431—41.
  • 113. Hall BF, Furtado GC, Joiner KA. Characterization of host cell-derived membrane proteins of the vacuole surrounding different intracellular forms of Trypanosoma cruzi in J774 cells. Evidence for phagocyte receptor sorting during the early stages of parasite entry. J Immunol 1991;147:4313—21.
  • 114. Andrews NW, Abrams CK, Slatin SL, Griffiths G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane poreforming activity at low pH. Cell 1990;61:1277—87.
  • 115. Carvalho TMU, De Souza W. Early events related with the behavior of Trypanosoma cruzi within an endocytic vacuole in mouse peritoneal macrophages. Cell Struct Funct 1989;14:383—92.

This page intentionally left blank

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >