Desktop version

Home arrow Engineering arrow Materials Processing Fundamentals 2017

Source

References

  • 1. S. Staude, A. Dorn, K. Pfaff, G. Markl, “Assemblages of ag-bi sulfosalts and conditions of their formation: the type locality of schapbachite (Ag0.4Pb0.2Bi0.4S) and neighboring mines in the Schwarzwald ore district, Southern Germany,” Can. Mineral. 48 (2010) 441-466.
  • 2. J.C. Kopp, V. Spieth, H.-J. Bernhardt, Z. dt. Ges. Geowiss, “Precious metals and selenides mineralisation in the copper-silver deposit Spremberg-Graustein, Niederlausitz, SE-Germany,” 163/4 (2012), 361-384.
  • 3. J.R. Craig, G. Kullerud, “The Cu-Zn-S system,” Mineral Deposita 8 (1973), 81-91.
  • 4. D. Chen et al., “Microwave synthesis of AgBiS2 dendrites in aqueous solution,” Inorg. Chem. Commun. 6 (2003) 710-712.
  • 5. L.K. Samanta, S. Chatterjee, “On the linear, nonlinear, and optoelectronic properties of some multinary compound semiconductors,” Phys. State. Sol. (b) 182 (1994), 85-89.
  • 6. T. Thongtem, N. Tipcompor, S. Thongtem, “Characterization of AgBiS2 Nanostructured Flowers Produced by Solvothermal Reaction,” Mater. Lett. 64 (2010) 755-758.
  • 7. G.Z. Shen et al., “Novel polyol route to AgBiS2 nanorods,” J. Cryst. Growth 252 (2003), 199-201.
  • 8. J.Q. Wang et al., “Synthesis of AgBiS2 microspheres by a templating method and their catalytic polymerization of alkylsilanes,” Chem. Commun. 46 (2007), 4931-4933.
  • 9. H. Liu et al., “A mild biomolecule-assisted route for preparation of flower-like AgBiS2 crystals,” J. Alloys Compd. 509 (2011), 267-272.
  • 10. N.K. Allouche et al., “Influence of aluminum doping in CuInS2 prepared by spray pyrolysis on different substrates,” J. Alloys Compd. 501 (2010) 85-88.
  • 11. M. Lei et al., “Cathodoluminescence variation of a single tapered CdS nanowire,” J. Alloys Compd. 509 (2011), 5020-5022.
  • 12. J. Yan et al., “Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane,” J. Mater. Sci. 47 (2012), 4159-4166.
  • 13. M. Trots et al., “High-temperature thermal expansion and structural behavior of stromeyerite, AgCuS,” J. Phys.: Condens. Matter 19 (2007), 136-204.
  • 14. R.F. Kadrgulov et al., “Phase relations, ionic transport and diffusion in the alloys of Cu2S-Ag2S mixed conductors,” Ionics 7 (2001) 156-160.
  • 15. H. Zhu et al., “Room-temperature synthesis of (Ag,Cu)2S hollow spheres by cation exchange and their optical properties,” Mater. Chem. Phys. 127 (2011) 24-27.
  • 16. J.R. Craig, Phase relations and mineral assemblages in the Ag-Bi-Pb-S system. Mineralium Depozita 1(1967), 278-305.
  • 17. S. Geller, J.H. Wernik, Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Acta Cryst 12 (1959), 46-54.
  • 18. A.C. Glatz, A. Pinella, X-ray and Neutron Diffraction Studies of the High-Temperature 13-Phase of the AgBiSe2/AgBiS2 System. J Mater Sci 3 (1968), 498-501.
  • 19. D. Wu, The stability of matildite(AgBiS2) and Ag2Bi4S7 and phase relations in the system Ag2S-Bi2S3. Acta Mineralogica Sinica 9 (1989), 126-132.
  • 20. B.J. Skinner, “The System Cu-Ag-S,” Econ. Geol. 61(1966), 1-26.
  • 21. Y.A. Chang, J. P. Neumann, U.V. Choudary, Phase Diagrams and Thermodynamic Properties of Ternary Copper-Sulfur-Metal Systems, INCRA Monograph VII, The Metallurgy of Copper, NBS, Washington, 1979.
  • 22. D. Wu, “Phase Relations in the System Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3, and Their Mineral Assemblages,” Chin. J. Geochem. 6 (1987) 225-233.
  • 23. S. Djurle, “An X-ray study on the system Ag-Cu-S” Acta Chem. Stand. 12 (1958) 1427-1436.
  • 24. A.J. Frueh, “The crystal structure of stromeyerite, AgCuS: A possible defect structure,” Z. Kristallogr. 106 (1955) 299-307.
  • 25. Y. Takuhara et al., “Syntheses of complex sulfides AgCuS and Ag3CuS2 from the elements under hydrothermal conditions,” J. Ceram. Soc. Jpn. 117 (2009) 359-362.
  • 26. S.N. Guin et al., “Temperature dependent reversible p-n-p type conduction switching with colossal change in thermopower of semiconducting AgCuS,” J. Am. Chem. Soc. 136 (2014), 12712-12720.
  • 27. J.A. Schmidt, A.E. Sagua, “Thermodynamic quantities for the ternary compound Stromeyerite: Cuj+sAgi-sS for 0 < 5 < 0.1,” J. Chem. Thermodynamics 25 (1993) 1453-1459.
  • 28. R.F. Kadrgulov, R.A. Yakshibaev, M.A. Khasanov, Ionics 7 (2001) 156-60.
  • 29. “Outotec roasting solutions,” (Sustainable use of Earth’s natural resources, 2016), 8. Available at http://www.outotec.com, Accessed: September 2016.
  • 30. F. Tesfaye, D. Lindberg, P. Taskinen, “Solid state electrochemical and calorimetric study of the equilibrium phase (Cu, Ag)2S,” 94 (2016), 101-109.
  • 31. A. Roine et al., “HSC Chemistry 6,” Outotec Oy Research Centre, Finland, (2010).
  • 32. C.G. Sceney et al., “Thermal analysis of copper dithiocarbamates,” 11 (1975), 301-306.
  • 33. D. Zivkovic et al., “Thermal study and mechanism of Ag2S oxidation in air,” J. Therm. Anal. Calorim. 111 (2013), 1173-1176.
  • 34. K. Singh et al., “Investigation of the Ag2SO4- BaSO4 binary system from an SOx sensor point of view,” Ionics 8 (2002), 470-478.
  • 35. F. Oudich, et al., “Phase equilibria investigations and thermodynamic modeling of the system Bi2O3-Al2O3,” J. Nucl. Mater. 457 (2015), 72-79.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >