Desktop version

Home arrow Computer Science arrow Computational Diffusion MRI: MICCAI Workshop, Athens, Greece, October 2016

Source

References

  • 1. Jones, D.K., Basser, P.J.: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52(5), 979-993 (2004)
  • 2. Aja-Fernandez, S., Tristan-Vega, A.: A review on statistical noise models for magnetic resonance imaging. LPI, ETSI Telecomunicacion, Universidad de Valladolid, Technical Report (2013)
  • 3. Ozarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., Irfanoglu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78, 16-32 (2013)
  • 4. Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60(2), 439448 (2008)
  • 5. Zhang, H., Schneider, T, Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000-1016 (2012)
  • 6. Bernstein, M.A., Thomasson, D.M., Perman, W.H.: Improved detectability in low signal-to- noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. Med. Phys. 16(5), 813-817 (1989)
  • 7. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259-267 (1994)
  • 8. Pizzolato, M., Ghosh, A., Boutelier, T., Deriche, R.: Magnitude and complex based diffusion signal reconstruction. In: CDMRI, pp. 127-140 (2014)
  • 9. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51(5), 924-937 (2004)
  • 10. Pizzolato, M., Wassermann, D., Boutelier, T., Deriche, R.: Exploiting the phase in diffusion MRI for microstructure recovery: towards axonal tortuosity via asymmetric diffusion processes. In: MICCAI (2015)
  • 11. Pizzolato, M., Wassermann, D., Duval, T., Campbell, J.S., Boutelier, T., Cohen-Adad, J., Deriche, R.: A temperature phantom to probe the ensemble average propagator asymmetry: anin-silico study. In: CDMRI, pp. 183-194 (2016)
  • 12. Prah, D.E., Paulson, E.S., Nencka, A.S., Schmainda, K.M.: A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion- weighted imaging. Magn. Reson. Med. 64(2), 418-429 (2010)
  • 13. Sprenger, T., Sperl, J.I., Fernandez, B., Haase, A., Menzel, M.I.: Real valued diffusion- weighted imaging using decorrelated phase filtering. Magn. Reson. Med. (2016). doi:10.1002/mrm.26138
  • 14. Eichner, C., Cauley, S.F., Cohen-Adad, J., Moller, H.E., Turner, R., Setsompop, K., Wald, L.L.: Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. NeuroImage 122, 373-384 (2015)
  • 15. Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.-C., Thiran J.-P., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: ISMRM14 (2014)
  • 16. Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69(6), 1534-1540 (2013)
  • 17. Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage 134, 365-385 (2016)
  • 18. Hellinger, E.: Neue Begrundung der Theorie quadratischer Formen von unendlichvielen Veranderlichen. J Reine Angew. Math. 136, 210-271 (1909)
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >