Desktop version

Home arrow Computer Science arrow Computational Diffusion MRI: MICCAI Workshop, Athens, Greece, October 2016



In this paper, we have proposed a denoising method by using multi-channel framelet grouped iterative hard thresholding, which not only takes advantage of inter-image correlations but yields good edge-preserving property. Experiments on synthetic data with noncentral chi noise and real data with repeated scans confirm that the proposed method outperforms state-of-the-art methods such as non-local means.

Acknowledgements This work was supported in part by NIH grants (NS093842, EB006733, EB009634, AG041721, MH100217, and AA012388) and Hunan Provincial Education Department grant (15A066).


  • 1. Yap, P.T., Fan, Y., Chen, Y., Gilmore, J., Lin, W., Shen, D.: Development trends of white matter connectivity in the first years of life. PLoS ONE 6(9), e24678 (2011)
  • 2. Wee, C.Y., Yap, P.T., Li, W., Denny, K., Brownyke, J., Potter, G., Welsh-Bohmer, K., Wang, L., Shen, D.: Enriched white-matter connectivity networks for accurate identification of MCI patients. Neuroimage 54(3), 1812-1822 (2011)
  • 3. Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Identification of MCI individuals using structural and functional connectivity networks. NeuroImage 59(3), 2045-2056 (2012)
  • 4. Wee, C.Y., Wang, L., Shi, F., Yap, P.T., Shen, D.: Diagnosis of autism spectrum disorders using regional and interregional morphological features. Hum. Brain Mapp. 35(7), 3414-3430 (2014)
  • 5. Jin, Y., Wee, C.Y., Shi, F., Thung, K.H., Yap, P.T., Shen, D.: Identification of infants at high- risk for autism spectrum disorder using multi-parameter multi-scale white matter connectivity networks. Hum. Brain Mapp. 36(12), 4880-4896 (2015)
  • 6. Ring, W.: Structural properties of solutions to total variation regularization problems. Mathematical Modelling and Numerical Analysis 34, 799-810 (2000)
  • 7. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489-509 (2006)
  • 8. Chan, R.H., Chan, T.F., Shen, L., Shen, Z.: Wavelet algorithms for high-resolution image reconstruction. SIAM J. Sci. Comput. 24(4), 1408-1432 (2003)
  • 9. Zhang, Y., Dong, B., Lu, Z.: t0 minimization for wavelet frame based image restoration. Math. Comput. 82, 995-1015 (2013)
  • 10. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic, New York (2008)
  • 11. Ron, A., Shen, Z.: Affine systems in Z2(Rd): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408-447 (1997)
  • 12. Dong, B., Shen, Z.: MRA-based wavelet frames and applications. In: IAS Lecture Notes Series. Summer Program on “The Mathematics of Image Processing”. Park City Mathematics Institute, Salt Lake City (2010)
  • 13. Jacob, L., Obozinski, G., Vert, J.P.: Group lasso with overlap and graph lasso. In: International Conference on Machine Learning (2009)
  • 14. Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. 23(4), 2448-2478 (2013)
  • 15. Schwartzman, A., Dougherty, R.F., Taylor, J.E.: False discovery rate analysis of brain diffusion direction maps. Ann. Appl. Stat. 2(1), 153-175 (2008)
  • 16. Koay, C.G., Ozarslan, E., Basser, P.J.: A signal transformational framework for breaking the noise floor and its applications in MRI. J. Magn. Reson. 197(2), 108-119 (2009)
  • 17. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425-441 (2008)
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >