Desktop version

Home arrow Computer Science arrow Computational Diffusion MRI: MICCAI Workshop, Athens, Greece, October 2016

Source

References

  • 1. Anwander, A., Tittgemeyer, M., von Cramon, D., Friedeiici, A., Knosche, T.: Connectivity- based parcellation of Broca’s area. Cereb. Cortex 17(4), 816-825 (2006)
  • 2. Barch, D.M., Burgess, G.C., Harms, M.P., Petersen, S.E., Schlaggar, B.L., Corbetta, M., Glasser, M.F., Curtiss, S., Dixit, S., Feldt, C., Nolan, D., Bryant, E., Hartley, T., Footer,

O. , Bjork, J.M., Poldrack, R., Smith, S., Johansen-Berg, H., Snyder, A.Z., Van Essen, D.C.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169-189 (2013)

3. Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews,

P. , Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077-1088 (2003)

  • 4. Clarkson, M.J., Malone, I.B., Modat, M., Leung, K.K., Ryan, N., Alexander, D.C., Fox, N.C., Ourselin, S.: A Framework for Using Diffusion Weighted Imaging to Improve Cortical Parcellation. Lecture Notes in Computer Science, vol. 6362. Springer, Berlin, Heidelberg (2010)
  • 5. Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968-980 (2006)
  • 6. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M., Nimmo-Smith, I.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014). http://journal.frontiersin.org/article/10.3389/fninf.2014.00008/full
  • 7. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105-124 (2013)
  • 8. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193-218 (1985)
  • 9. Jbabdi, S., Behrens, T.E.: Long-range connectomics. Ann. N.Y. Acad. Sci. 1305(1), 83-93 (2013)
  • 10. Lefranc, S., Roca, P., Perrot, M., Poupon, C., Le Bihan, D., Mangin, J.F., Riviere, D.: Group- wise connectivity-based parcellation of the whole human cortical surface using watershed- driven dimension reduction. Med. Image Anal. 30, 11-29 (2016)
  • 11. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall/CRC, London (1989)
  • 12. Moreno-Dominguez, D., Anwander, A., Knosche, T.R.: A hierarchical method for whole-brain connectivity-based parcellation. Hum. Brain Mapp. 35(10), 5000-5025 (2014)
  • 13. Murtagh, F., Contreras, P.: Methods of Hierarchical Clustering. Empir. Econ. 38(1), 23-45 (2011)
  • 14. Parisot, S., Arslan, S., Passerat-Palmbach, J., Wells, W.M., Rueckert, D.: Tractography-driven groupwise multi-scale parcellation of the cortex. Inf. Process. Med. Imaging 24, 600-612 (2015)
  • 15. Passingham, R.E., Stephan, K.E., Kotter, R.: The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3(8), 606-616 (2002)
  • 16. Pendergast, J.F., Gange, S.J., Newton, M.A., Lindstrom, M.J., Palta, M., Fisher, M.R.: A survey of methods for analyzing clustered binary response data. Int. Stat. Rev./Rev. Int. Stat. 64(1), 89 (1996)
  • 17. Pohl, K.M., Fisher, J., Bouix, S., Shenton, M., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Using the logarithm of odds to define a vector space on probabilistic atlases. Med. Image Anal. 11(5), 465-477 (2007)
  • 18. Reveley, C., Seth, A.K., Pierpaoli, C., Silva, A.C., Yu, D., Saunders, R.C., Leopold, D.A., Ye, F.Q.: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl. Acad. Sci. 112(21), E2820-E2828 (2015)
  • 19. Schmahmann, J.D., Pandya, D.N.: Fiber Pathways of the Brain, vol. 1. Oxford University Press, Oxford (2006)
  • 20. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176-1185 (2004)
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >