Desktop version

Home arrow Computer Science arrow Computational Diffusion MRI: MICCAI Workshop, Athens, Greece, October 2016

Source

Conclusion

We presented a parcellation result using dMRI data, demonstrating areal definitions that reflect some well known architectonically defined regions without the use of a training stage or any non-local spatial constraints. The population average feature set is most discriminative in primary areas that are consistently located across subjects, such as S-I and M-I, and heavily myelinated regions. However, we also observe clusters that may correspond to non-primary areas such as area 44 and 45. Our results demonstrate that the higher-order, diffusion-based, feature set may be distinguishing local differences in the texture and geometry of the myelinated meshwork of the neocortex not all of which are visible in myelin density maps. Incorporating this information is likely to improve the performance of non- supervised multimodal parcellation schemes for cortical areas.

References

  • 1. Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig (1909)
  • 2. Vogt, C., Vogt, O.: Allgemeine ergebnisse unserer hirnforschung, vol. 25. JA Barth (1919)
  • 3. von Economo, C.F., Koskinas, G.N., Triarhou, L.C.: Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex. Karger, Basel (2008)
  • 4. Zilles, K., Amunts, K.: Centenary of Brodmann’s map - conception and fate. Nat. Rev. Neurosci. 11(2), 139-145 (2010)
  • 5. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17 and 18 brought into stereotaxic space - where and how variable? Neuroimage 11(1), 66-84 (2000)
  • 6. Amunts, K., Schleicher, A., Burgel, U., Mohlberg, H., Uylings, H., Zilles, K.: Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412(2), 319-341 (1999)
  • 7. Zilles, K., Schleicher, A., Langemann, C., Amunts, K., Morosan, P., Palomero-Gallagher, N., Schormann, T., Mohlberg, H., Burgel, U., Steinmetz, H., et al.: Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum. Brain Mapp. 5(4), 218-221 (1997)
  • 8. Fischl, B., Salat, D.H., van der Kouwe, A.J.W., Makris, N., Segonne, F., Quinn, B.T., Dale, A.M.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69-S84 (2004)
  • 9. Sigalovsky, I.S., Fischl, B., Melcher, J.R.: Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. Neuroimage 32(4), 1524-1537 (2006)
  • 10. Lutti, A., Dick, F., Sereno, M.I., Weiskopf, N.: Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 93, 176-188 (2014)
  • 11. Sereno, M.I., Lutti, A., Weiskopf, N., Dick, F.: Mapping the human cortical surface by combining quantitative T1 with retinotopy. Cerebral Cortex 23(9), 2261-2268 (2013)
  • 12. Glasser, M.F., Van Essen, D.C.: Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31(32), 11597-11616 (2011)
  • 13. Glasser, M.F., Goyal, M.S., Preuss, T.M., Raichle, M.E., Van Essen, D.C.: Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage 93, 165-175 (2014)
  • 14. Glasser, M.F., Coalson, T., Robinson, E., Hacker, C., Harwell, J., Yacoub, E., Ugurbil, K., Anderson, J., Beckmann, C.F., Jenkinson, M., et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171-178 (2016)
  • 15. Leuze, C.W.U., Anwander, A., Bazin, P.-L., Dhital, B., Stuber, C., Reimann, K., Geyer, S., Turner, R.: Layer-specific intracortical connectivity revealed with diffusion MRI. Cerebral Cortex 24(2), 328-339 (2014)
  • 16. Anwander, A., Pampel, A., Knosche, T.R.: In vivo measurement of cortical anisotropy by diffusion-weighted imaging correlates with cortex type. Proc. Int. Soc. Magn. Reson. Med 18, 109 (2010)
  • 17. Aggarwal, M., Nauen, D.W., Troncoso, J.C., Mori, S.: Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI. Neuroimage 105, 198-207 (2015)
  • 18. Deoni, S.C., Jones, D.K.: Time-series analysis of diffusion signal as a model-free approach to segementing tissue. In: Proceedings of the 14th Annual Meeting ofISMRM, p. 2734 (2006)
  • 19. Haroon, H.A., Binney, R.J., Parker, G.J.: Probabilistic quantification of regional cortical microstructural complexity. Proc. Intl. Soc. Mag. Reson. Med. 18, 578 (2010)
  • 20. McNab, J.A., Polimeni, J.R., Wang, R., Augustinack, J.C., Fujimoto, K., Stevens, A., Janssens, T., Farivar, R., Folkerth, R.D., Vanduffel, W., et al.: Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. Neuroimage 69, 87-100 (2013)
  • 21. Kleinnijenhuis, M., van Mourik, T., Norris, D.G., Ruiter, D.J., van Cappellen van Walsum, A.- M., Barth, M.: Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T. NeuroImage 109, 378-387 (2015)
  • 22. Nagy, Z., Alexander, D.C., Thomas, D.L., Weiskopf, N., Sereno, M.I.: Using high angular resolution diffusion imaging data to discriminate cortical regions. PloS ONE 8(5), e63842 (2013)
  • 23. Wilm, B.J., Nagy, Z., Barmet, C., Johanna Vannesjo, S., Kasper, L., Haeberlin, M., Gross, S., Dietrich, B.E., Brunner, D.O., Schmid, T., et al.: Diffusion MRI with concurrent magnetic field monitoring. Magn. Reson. Med. 74(4), 925-933 (2015)
  • 24. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., et al.: Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80, 125-143 (2013)
  • 25. Glasser, M.F., Sotiropoulos, S.N., Anthony Wilson, J., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105-124 (2013)
  • 26. Ugurbil, K., Xu, J., Auerbach, E.J., Moeller, S., Vu, A.T., Duarte-Carvajalino, J.M., Lenglet, C., Wu, X., Schmitter, S., Van de Moortele, P.F., et al.: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. Neuroimage 80, 80-104
  • (2013)
  • 27. Fischl, B., Sereno, M.I., Tootell, R.B.H., Anders M Dale, et al. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272-284 (1999)
  • 28. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. Appl. Stat. 28(1), 100-108 (1979)
  • 29. White, L.E., Andrews, T.J., Hulette, C., Richards, A., Groelle, M., Paydarfar, J., Purves, D.: Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. Cerebral Cortex 7(1), 18-30 (1997)
  • 30. Leonard, C.M., Puranik, C., Kuldau, J.M., Lombardino, L.J.: Normal variation in the frequency and location of human auditory cortex landmarks. heschl’s gyrus: where is it? Cerebral Cortex 8(5), 397-406 (1998)
  • 31. Bok, S.T.: Der einflu der in den furchen und windungen auftretenden krummungen der gro hirnrinde auf die rindenarchitektur. Zeitschrift fur die gesamte Neurologie und Psychiatrie 121(1), 682-750 (1929)
  • 32. Waehnert, M.D., Dinse, J., Weiss, M., Streicher, M.N., Waehnert, P., Geyer, S., Turner, R., Bazin, P.-L.: Anatomically motivated modeling of cortical laminae. Neuroimage 93, 210-220
  • (2014)
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >