Desktop version

Home arrow Computer Science arrow Computational Diffusion MRI: MICCAI Workshop, Athens, Greece, October 2016

Source

References

  • 1. Basser, P.J., et al.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259-267 (1994)
  • 2. Leow, A.D., et al.: The tensor distribution function. Magn. Reson. Med. 61(1), 205-214 (2009)
  • 3. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358-1372 (2004)
  • 4. Tournier, J.D., et al.: Direct estimation of the fiber orientation density function from diffusion- weighted MRI data using spherical deconvolution. Neuroimage. 23, 1176-1185 (2004)
  • 5. Zhang, H., et al.: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage. 56(3), 1301-1315 (2011)
  • 6. Gramfort, A., et al.: Identifying predictive regions from fMRI with TV-L1 prior. In: 3rd International Workshop on Pattern Recognition in Neuroimaging, Philadelphia, PA, 2013, pp. 17-20 (2013)
  • 7. Nir, T., et al.: Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin. 3, 180-195 (2013)
  • 8. Grana, M., et al.: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation. Neurosci. Lett. 502(3), 225-229 (2011)
  • 9. Haller, S., et al.: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J. Alzheimers Dis. 22(1), 315-327 (2010)
  • 10. O’Dwyer, L., et al.: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One. 7(2), e32441 (2012)
  • 11. Holmes, C.J., et al.: Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 22(2), 324-333 (1998)
  • 12. Leow, A.D., et al.: Statistical properties of Jacobian maps and the realization of unbiased large- deformation nonlinear image registration. IEEE Trans. Med. Imaging. 26(6), 822-832 (2007)
  • 13. Pasternak, O., et al.: Free water elimination and mapping from diffusion MRI. Magn. Reson. Med. 62(3), 717-730 (2009)
  • 14. Kloppel, S., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain. 131(3), 681-689(2008)
  • 15. Lerch, J.P., et al.: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiol. Aging. 29(1), 23-30 (2008)
  • 16. Magnin, B., et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology. 51(2), 73-83 (2009)
  • 17. Wee, C.Y., et al.: Enriched white matter connectivity networks for accurate identification of MCI patients. Neuroimage. 54(3), 1812-1822 (2011)
  • 18. Cuingnet, R., et al.: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 682-696 (2013)
  • 19. Bloy, L., et al.: HARDI based pattern classifiers for the identification of white matter pathologies. Med. Image Comput. Comput. Assist. Interv. 14(2), 234-241 (2011)
  • 20. Nagy, Z., et al.: Using high angular resolution diffusion imaging data to discriminate cortical regions. PLoS One. 8(5), e63842 (2013)
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >