Desktop version

Home arrow Language & Literature arrow COGNITIVE APPROACH TO NATURAL LANGUAGE PROCESSING

Source

Acknowledgments

The “Deutsche Forschungsgemeinschaft” (MJH; HO 5139/2-1), the German Institute for Educational Research in the Knowledge Discovery in Scientific Literature (SR) program and the LOEWE Center for Digital Humanities (CB) supported this work.

Bibliography

[BAA 95] Baayen H.R., Piepenbrock R., Gulikers L., The CELEX Lexical Database. Release 2 (CD-ROM), LDC, University of Pennsylvania, Philadelphia, 1995.

[BAN 01] Banko M., Brill E., “Scaling to very very large corpora for natural language disambiguation”, Proceedings of ACL ‘01, Toulouse, pp. 26-33, 2001.

[BAR 07] Barber H.A., Kutas M., “Interplay between computational models and cognitive electrophysiology in visual word recognition”, Brain Research Reviews, vol. 53, no. 1, pp. 98-123, 2007.

[BEN 03] Bengio Y., Ducharme R., Vincent P. et al., “A neural probabilistic language model”, Journal of Machine Learning Research, vol. 3, no. 6, pp. 1137-1155, 2003.

[BIE 12] Biemann C., Roos S., Weihe K., “Quantifying semantics using complex network analysis”, Proceedings of COLING 2012, Mumbai, pp. 263-278, 2012.

[BIE 15] Biemann C., Remus S., Hofmann M.J., “Predicting word ‘predictability’ in cloze completion, electroencephalographic and eye movement data”, Proceedings of the 12th International Workshop on Natural Language Processing and Cognitive Science, Krakow, pp. 83-94, 2015.

[BLE 03] Blei D.M., Ng A.Y., Jordan M.I. “Latent Dirichlet Allocation”, Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.

[BLO 80] Bloom P.A., Fischler I., “Completion norms for 329 sentence contexts”, Memory & cognition, vol. 8, no. 6, pp. 631-642, 1980.

[BUL 07] Bullinaria J.A., Levy J.P., “Extracting semantic representations from word co-occurrence statistics: a computational study”, Behavior Research Methods, vol. 39, no. 3, pp. 510-526, 2007.

[BRY 11] Brysbaert M., Buchmeier M., Conrad M. et al, “A review of recent developments and implications for the choice of frequency estimates in German”, Experimental psychology, vol. 58, pp. 412-424, 2011.

[COO 10] Coolican H., Research Methods and Statistics in Psychology, Hodder & Stoughton, London, 2010.

[DAM 06] Dambacher M., Kliegl R., Hofmann M.J. et al., “Frequency and predictability effects on event-related potentials during reading”, Brain Research, vol. 1084, no. 1, pp. 89-103, 2006.

[DAM 07] Dambacher M., Kliegl R., “Synchronizing timelines: relations between fixation durations and N400 amplitudes during sentence reading”, Brain research, vol. 1155, pp. 147-162, 2007.

[DAM 09] Dambacher M., Bottom-up and Top-down Processes in Reading, Potsdam University Press, Potsdam, 2009.

[ELM 90] Elman J.L., “Finding structure in time,” Cognitive Science, vol. 211, pp. 1-28, 1990.

[ENG 05] Engbert R., Nuthmann A., Richter E.M. et al, “SWIFT: a dynamical model of saccade generation during reading”, Psychological Review, vol. 112, no. 4, pp. 777-813, 2005.

[GAM 16] Gamallo P., “Comparing explicit and predictive distributional semantic models endowed with syntactic contexts,” Language Resources and Evaluation, pp. 1-17, doi:10.1007/s10579-016-9357-4, 2016.

[GOL 12] Goldhahn D., Eckart T., Quasthoff U., “Building large monolingual dictionaries at the Leipzig Corpora Collection: From 100 to 200 languages”, Proceedings of LREC 2012, Istanbul, pp. 759-765, 2012.

[GRI 07] Griffiths T.L., Steyvers M., Tenenbaum J.B., “Topics in semantic representation”, Psychological Review, vol. 114, no. 2, pp. 211-244, 2007.

[HOF 14] Hofmann M.J., Jacobs A.M., “Interactive activation and competition models and semantic context: from behavioral to brain data”, Neuroscience & Biobehavioral Reviews, vol 46, pp. 85-104, 2014.

[HOF 08] Hofmann M.J., Tamm S., Braun M.M. et al., “Conflict monitoring engages the mediofrontal cortex during nonword processing”, Neuroreport, vol. 19, no. 1, pp. 25-29, 2008.

[KLI 04] Kliegl R., Grabner E., Rolfs M. et al., “Length, frequency, and predictability effects of words on eye movements in reading”, European Journal of Cognitive Psychology, vol. 16, no. 12, pp. 262-284, 2004.

[KNE 95] Kneser R., Ney H., “Improved backing-off for m-gram language modeling”, Proceedings of IEEE Int’l Conference on Acoustics, Speech and Signal Processing, Detroit, pp. 181-184, 1995.

[KUT 11] Kutas M., Federmeier K.D., “Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP)”, Annual Review of Psychology, vol. 62, pp. 621-647, 2011.

[KUT 84] Kutas M., Hillyard S.A., “Brain potentials during reading reflect word expectancy and semantic association”, Nature, vol. 307, no. 5947, pp. 161-163, 1984.

[LAN 97] Landauer T.K., Dumais S.T., “A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge”, Psychological Review, vol. 104, no. 2, pp. 211-240, 1997.

[MAN 99] Manning C.D., Schutze H., Foundations of Statistical Natural Language Processing, MIT Press, Cambridge, 1999.

[MAR 71] Marr D., “Simple memory: a theory”, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol. 262, no. 841, pp. 23-81, 1971.

[MCC 81] McClelland J.L., Rumelhart D.E., “An interactive activation model of context effects in letter perception: part 1”, Psychological Review, vol. 5, pp. 375-407, 1981.

[MIK 12] Mikolov T., Statistical language models based on neural networks, PhD Thesis, Brno University of Technology, 2012.

[MIK 13] Mikolov T., Yih W., Zweig G., “Linguistic regularities in continuous space word representations”, Proceedings of NAACL-HLT, Atlanta, pp. 746-751, 2013.

[NOR 03] Norman K.A., O’Reilly R.C., “Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach”, Psychological Review, vol. 110, no. 4, pp. 611-646, 2003.

[PER 10] Perry C., Ziegler J.C., Zorzi M., “Beyond single syllables: large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model”, Cognitive Psychology, vol. 61, no. 2, pp. 106-151, 2010.

[PHA 07] Phan X.-H., Nguyen C.-T., “GibbsLDA++: A C/C++ Implementation of Latent Dirichlet Allocation (LDA)”, available at: http://gibbslda.sourceforge.net/, 2007.

[RAD 12] Radach R., Gunther T., Huestegge L., “Blickbewegungen beim Lesen, Leseentwicklung und Legasthenie”, Lernen und Lernstoerungen, vol. 1, no. 3, pp. 185-204, 2012.

[REI 03] Reichle E.D., Rayner K., Pollatsek A., “The E-Z reader model of eye- movement control in reading: comparisons to other models”, The Behavioral and Brain Sciences, vol. 26, no. 4, pp. 445-476, 2003.

[SPI 16] Spichtig A., Hiebert H., Vorstius C. et al., “The decline of comprehension-based silent reading efficiency in the u.s.: a comparison of current data with performance in 1960”, Reading Research Quarterly, vol. 51, no. 2, pp. 239-259, 2016.

[SPI 97] Spieler D.H., Balota D.A., “Bringing computational models of word naming down to the item level”, Psychological Science, vol. 8, no. 6, pp. 411416, 1997.

[TAY 53] Taylor W.L., “‘Cloze’ procedure: a new tool for measuring readability”,

Journalism Quarterly, vol. 30, p. 415, 1953.

[ZIE 05] Ziegler J.C., Goswami U., “Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory”, Psychological Bulletin, vol. 131, no. 1, pp. 3-29, 2005.

 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS

Related topics